Evidence for the role of G-proteins in flow stimulation of dinoflagellate bioluminescence

Antony K. Chen, Michael I. Latz, Peter Sobolewski, John A. Frangos


Luminescent dinoflagellates respond to flow by the production of light. The primary mechanotransduction event is unknown, although downstream events include a calcium flux in the cytoplasm, a self-propagating action potential across the vacuole membrane, and a proton flux into the cytoplasm that activates the luminescent chemistry. Given the role of GTP-binding (G) proteins in the mechanotransduction of flow by nonmarine cells and the presence of G-proteins in dinoflagellates, it was hypothesized that flow-stimulated dinoflagellate bioluminescence involves mechanotransduction by G-proteins. In the present study, osmotic swelling of cells of the dinoflagellate Lingulodinium polyedrum was used as a drug delivery system to introduce GDPβS, an inhibitor of G-protein activation. Osmotically swollen cells produced higher levels of flow-stimulated bioluminescence at a lower threshold of shear stress, indicating they were more flow sensitive. GDPβS inhibited flow-stimulated bioluminescence in osmotically swollen cells and in cells that were restored to the isosmotic condition following hypoosmotic treatment with GDPβS. These results provide evidence that G-proteins are involved in the mechanotransduction of flow in dinoflagellates and suggest that G-protein involvement in mechanotransduction may be a fundamental evolutionary adaptation.

  • osmotic drug delivery
  • shear stress
  • Lingulodinium
View Full Text