Regulatory, Integrative and Comparative Physiology

Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith, and Ancel Keys

David H. Evans

This article has a correction. Please see:


In the 1930s, August Krogh, Homer Smith, and Ancel Keys knew that teleost fishes were hyperosmotic to fresh water and hyposmotic to seawater, and, therefore, they were potentially salt depleted and dehydrated, respectively. Their seminal studies demonstrated that freshwater teleosts extract NaCl from the environment, while marine teleosts ingest seawater, absorb intestinal water by absorbing NaCl, and excrete the excess salt via gill transport mechanisms. During the past 70 years, their research descendents have used chemical, radioisotopic, pharmacological, cellular, and molecular techniques to further characterize the gill transport mechanisms and begin to study the signaling molecules that modulate these processes. The cellular site for these transport pathways was first described by Keys and is now known as the mitochondrion-rich cell (MRC). The model for NaCl secretion by the marine MRC is well supported, but the model for NaCl uptake by freshwater MRC is more unsettled. Importantly, these ionic uptake mechanisms also appear to be expressed in the marine gill MRC, for acid-base regulation. A large suite of potential endocrine control mechanisms have been identified, and recent evidence suggests that paracrines such as endothelin, nitric oxide, and prostaglandins might also control MRC function.

  • gill salt transport
  • mitochondrion-rich cell
  • endothelin
View Full Text