Regulatory, Integrative and Comparative Physiology

Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans

Dominik Pesta, Florian Hoppel, Christian Macek, Hubert Messner, Martin Faulhaber, Conrad Kobel, Walther Parson, Martin Burtscher, Michael Schocke, Erich Gnaiger


Endurance and strength training are established as distinct exercise modalities, increasing either mitochondrial density or myofibrillar units. Recent research, however, suggests that mitochondrial biogenesis is stimulated by both training modalities. To test the training “specificity” hypothesis, mitochondrial respiration was studied in permeabilized muscle fibers from 25 sedentary adults after endurance (ET) or strength training (ST) in normoxia or hypoxia [fraction of inspired oxygen (FiO2) = 21% or 13.5%]. Biopsies were taken from the musculus vastus lateralis, and cycle-ergometric incremental maximum oxygen uptake (V̇o2max) exercise tests were performed under normoxia, before and after the 10-wk training program. The main finding was a significant increase (P < 0.05) of fatty acid oxidation capacity per muscle mass, after endurance and strength training under normoxia [2.6- and 2.4-fold for endurance training normoxia group (ETN) and strength training normoxia group (STN); n = 8 and 3] and hypoxia [2.0-fold for the endurance training hypoxia group (ETH) and strength training hypoxia group (STH); n = 7 and 7], and higher coupling control of oxidative phosphorylation. The enhanced lipid oxidative phosphorylation (OXPHOS) capacity was mainly (87%) due to qualitative mitochondrial changes increasing the relative capacity for fatty acid oxidation (P < 0.01). Mitochondrial tissue-density contributed to a smaller extent (13%), reflected by the gain in muscle mass-specific respiratory capacity with a physiological substrate cocktail (glutamate, malate, succinate, and octanoylcarnitine). No significant increase was observed in mitochondrial DNA (mtDNA) content. Physiological OXPHOS capacity increased significantly in ETN (P < 0.01), with the same trend in ETH and STH (P < 0.1). The limitation of flux by the phosphorylation system was diminished after training. Importantly, key mitochondrial adaptations were similar after endurance and strength training, regardless of normoxic or hypoxic exercise. The transition from a sedentary to an active lifestyle induced muscular changes of mitochondrial quality representative of mitochondrial health.

  • strength training
  • human skeletal muscle
  • permeabilized fibers
  • OXPHOS capacity
  • coupling control
  • fatty acid oxidation
  • high-resolution respirometry
View Full Text