Regulatory, Integrative and Comparative Physiology

Vasoactivity of the gasotransmitters hydrogen sulfide and carbon monoxide in the chicken ductus arteriosus

Saskia van der Sterren, Pamela Kleikers, Luc J. I. Zimmermann, Eduardo Villamor


Besides nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2S) is a third gaseous messenger that may play a role in controlling vascular tone and has been proposed to serve as an O2 sensor. However, whether H2S is vasoactive in the ductus arteriosus (DA) has not yet been studied. We investigated, using wire myography, the mechanical responses induced by Na2S (1 μM–1 mM), which forms H2S and HS in solution, and by authentic CO (0.1 μM-0.1 mM) in DA rings from 19-day chicken embryos. Na2S elicited a 100% relaxation (pD2 4.02) of 21% O2-contracted and a 50.3% relaxation of 62.5 mM KCl-contracted DA rings. Na2S-induced relaxation was not affected by presence of the NO synthase inhibitor l-NAME, the soluble guanylate cyclase (sGC) inhibitor ODQ, or the K+ channel inhibitors tetraethylammonium (TEA; nonselective), 4-aminopyridine (4-AP, KV), glibenclamide (KATP), iberiotoxin (BKCa), TRAM-34 (IKCa), and apamin (SKCa). CO also relaxed O2-contracted (60.8% relaxation) and KCl-contracted (18.6% relaxation) DA rings. CO-induced relaxation was impaired by ODQ, TEA, and 4-AP (but not by l-NAME, glibenclamide, iberiotoxin, TRAM-34 or apamin), suggesting the involvement of sGC and KV channel stimulation. The presence of inhibitors of H2S or CO synthesis as well as the H2S precursor l-cysteine or the CO precursor hemin did not significantly affect the response of the DA to changes in O2 tension. Endothelium-dependent and -independent relaxations were also unaffected. In conclusion, our results indicate that the gasotransmitters H2S and CO are vasoactive in the chicken DA but they do not suggest an important role for endogenous H2S or CO in the control of chicken ductal reactivity.

  • ductus arteriosus
  • oxygen sensing
View Full Text