Mechanisms of the antidiabetic effects of the \(\beta_3 \)-adrenergic agonist CL-316243 in obese Zucker-ZDF rats

XILIN LIU, FLEURETTE PÉRUSSE, AND LUDWIK J. BUKOWIECKI
Department of Physiology, Faculty of Medicine, Laval University, Québec City, Canada G1K 7P4

Liu, Xilin, Fleurette Pérusse, and Ludwik J. Bukowiecki. Mechanisms of the antidiabetic effects of the \(\beta_3 \)-adrenergic agonist CL-316243 in obese Zucker-ZDF rats. Am. J. Physiol. 274 (Regulatory Integrative Comp. Physiol. 43): R1212–R1219, 1998.—Previous studies have demonstrated that chronic cold exposure activates the sympathetic nervous system, increases energy expenditure, improves glucose tolerance, enhances insulin sensitivity, and stimulates glucose uptake in peripheral tissues (brown and white adipose tissues [BAT and WAT] and muscles) of normal rats. The goal of the present studies was to test whether the selective \(\beta_3 \)-adrenergic agonist CL-316243 (CL) would mimic the beneficial effects of cold exposure in lean and obese ZDF/Gmi-fa male (ZDF) rats, a new model of type II diabetes. In obese ZDF rats, chronic infusion of CL (1 mg·kg\(^{-1}\)·day\(^{-1}\) for 14 days) significantly decreased body weight gain, food intake, and WAT weight. It also increased total tissue cytochrome oxidase activity, not only in BAT (15 times), but also in WAT (2–4 times), suggesting that it progressively enhanced mitochondrial oxidase activity in adipose tissues. CL treatment normalized hyperglycemia and reduced hyperinsulinemia and circulating free fatty acid (FFA) levels. It also improved glucose tolerance and reduced insulin response during an intravenous glucose tolerance test. In general, the beneficial effects of CL were more pronounced in obese than in lean rats. Hyperinsulinemic-euglycemic glucose clamp studies revealed that CL markedly improved insulin responsiveness in obese rats (3–4 times) and increased glucose uptake in BAT (21 times), WAT (3 times), skeletal muscles (2–3 times), and in the diaphragm (2.8 times), but not in the heart. It is concluded that chronic CL treatment improves glucose tolerance and insulin responsiveness in obese ZDF rats by a mechanism similar to that induced by chronic cold exposure, i.e., by stimulating facultative thermogenesis, mitochondrial oxidase, and glucose utilization in BAT and WAT. In addition to this mechanism, the reduction in plasma FFA levels induced by chronic CL treatment may further contribute to enhance glucose uptake in skeletal muscles (a tissue that does not express typical \(\beta_3 \)-adrenergceptors) via the “glucose-fatty acid cycle.” The anti-obesity and antidiabetic properties of CL suggest that selective \(\beta_3 \)-adrenergic agonists may represent useful agents for the treatment of type II diabetes.

Obesity; diabetes; brown adipose tissue; skeletal muscles; insulin

CHRONIC COLD EXPOSURE activates the sympathetic nervous system, increases energy expenditure, improves glucose tolerance, enhances insulin sensitivity, and stimulates glucose uptake in rat peripheral tissues (brown adipose tissue [BAT], white adipose tissue [WAT], the heart, diaphragm, and skeletal muscles) (44, 52, 54, 55). Cold exposure exerts these antidiabetic effects despite the fact that it decreases plasma insulin levels and increases plasma norepinephrine concentration. The beneficial effects of cold exposure may be partly mimicked by chronic norepinephrine treatment in vivo (33) or by electrical stimulation of the ventromedial hypothalamus (51). In vitro studies have revealed that norepinephrine stimulates glucose uptake in isolated brown adipocytes (even in the absence of extracellular insulin) and potentiates the glucose-stimulatory effects of insulin (35). The stimulatory effects of norepinephrine can be blocked by the nonspecific \(\beta_2 \)-agonist propranolol or by inhibiting mitochondrial fatty acid oxidation with methylpalmitoate, a specific inhibitor of mitochondrial carnitine acyltransferase (35). This suggests that norepinephrine stimulates glucose uptake in BAT because it stimulates mitochondrial fatty acid oxidation and the glycolytic flux. Glycolysis presumably provides the necessary ATP for activating fatty acids when oxidative phosphorylation is uncoupled by fatty acids bound to the mitochondrial uncoupling protein (for reviews, see Refs. 24, 25).

On the other hand, pharmacological studies revealed that BAT and WAT contain at least three types of \(\beta \)-adrenoceptors (ARs) (for a review, see Ref. 30). Binding studies using hydrophilic radioligands performed on intact brown adipocytes showed that the low-affinity \(\beta_3 \)-ARs are 10 times more abundant than the high-affinity \(\beta_2 \)-ARs, whereas \(\beta_2 \)-ARs appear to be mainly localized in cells other than typical brown adipocytes, possibly in endothelial cells forming the numerous capillaries irrigating BAT (10). Other metabolic studies indicated that norepinephrine, at concentrations usually found in the circulation (1–25 nM), controls both lipolysis and respiration mainly via \(\beta_2 \)-ARs, whereas at much higher levels, presumably occurring in the synaptic cleft after sympathetic stimulation (by cold exposure, diet, stress, etc.), norepinephrine regulates these metabolic processes via both \(\beta_2 \)- and \(\beta_3 \)-adrenergic pathways (3). Until recently, it was generally considered that \(\beta_2 \)-ARs were absent in the heart (containing mainly \(\beta_1 \)-ARs) and in skeletal muscles (containing mainly \(\beta_2 \)-ARs), but it appears that the heart may contain functional \(\beta_2 \)-ARs (15) and/or “atypical” (\(\beta_4 \))-ARs (27). Although the role of these receptors still remains to be defined in different species, the presence of a variety of \(\beta \)-ARs in different tissues opens up the possibility of developing new drugs that specifically activate thermogenesis in adipose tissues and consequently increase glucose utilization, without stimulating the heart or muscles (2, 7).

On this basis, we tested whether the selective \(\beta_3 \)-agonist CL-316243 [disodium(R,R)-5\{-2-[2-(3-chlorophenyl)-2-hydroxyethyl]-amino\}propyl\}-1,3-benzodioxole-2,2-dicarboxylate] (CL) would mimic the beneficial effects of cold exposure (that were mainly studied in normal rats) in lean and obese ZDF/Gmi-fa male (ZDF) rats. The obese ZDF rat is a recently developed model of...
obesity and type II diabetes that is characterized by elevated plasma levels of insulin, glucose, triglyceride, and cholesterol (41). In this new model, hyperglycemia can be detected at ~7 wk of age, and obese animals are clearly diabetic (blood glucose of ~25 mM) by 10 wk of age. Initially, the diabetic animals are markedly hyperinsulinemic, but hyperinsulinemia progressively decreases with age. Downregulation of glucose transporters in the pancreas (GLUT-2) and in muscles (GLUT-4) may contribute to the development of diabetic hyperglycemia (14, 47). Because of these characteristics and the consistency in the development of diabetes, the obese ZDF represents an ideal model for investigating the effects of antidiabetic drugs on type II diabetes (49).

In preliminary experiments, we observed that CL did not reduce hyperglycemia in diabetic ZDF rats when given under acute conditions (single intravenous injections or subcutaneous infusions for a few days). Therefore, we tested the long-term effects of CL that was chronically infused via an osmotic minipump during 2 wk. It was found that chronic CL treatment progressively normalizes glycemia, reduces insulinemia, and decreases the levels of circulating free fatty acids (FFA) in obese diabetic ZDF rats. This treatment also markedly improved their glucose and insulin responses during an intravenous glucose tolerance test (IVGTT). Hyperinsulinemic-euglycemic clamps combined with the [2-3H]deoxyglucose ([2- 3H]DG) method revealed that chronic CL treatment markedly increases insulin responsiveness in obese rats and that it increases glucose uptake in BAT, WAT, the diaphragm, and skeletal muscles, but not in the heart.

MATERIALS AND METHODS

Animals and treatments. ZDF and their lean littermates were obtained from Genetic Models at the age of 7 wk and were housed in individual cages at 23°C with a 12:12-h light-dark cycle. The rats received Purina chow and water ad libitum and were used 3–5 wk after their arrival.

CL administration. CL was obtained from Lederle Laboratories, American Cyanamid, Pearl River, NY (7). The drug was dissolved under sterile conditions in distilled water containing sodium metabisulfite (0.2 mM) and was administered for 14 days at a dose of 1 mg·kg⁻¹·day⁻¹ via osmotic minipumps (Alza, Palo Alto, CA; model 2002) that were implanted in the back of the animals under isoflurane anesthesia. Control animals received the carrier solution (33).

IVGTTS. One week before the IVGTTS and the hyperinsulinemic-euglycemic clamps (see below), two polyethylene cannulas filled with sterile heparinized saline (30 U/ml) were inserted under anesthesia with a mixture of ketamine and xylazine (60 mg and 7.5 mg/kg) into the right external jugular vein and the common carotid artery (PE-50 and PE-10, respectively; Becton Dickinson, Parsippany, NJ), as previously described (33). Both tubes were exteriorized through a neck incision, checked for patency, and sealed. Glucose tolerance tests were performed 13 days after the beginning of the treatment with CL in conscious and semifasted rats (3–4 h). Glucose (0.5 g/kg) was injected into the jugular vein, arterial blood was sampled (0.18 ml) at various time points, and the samples were immediately replaced with an equivalent volume of heparinized saline. Blood samples were transferred into chilled heparinized tubes, centrifuged at 4°C, and the plasma was kept frozen (~80°C) for later insulin and glucose determinations. Total and incremental glucose and insulin areas were calculated as previously described (53).

Glucose uptake in peripheral tissues. Glucose uptake was estimated by determining the glucose metabolic index (R1213EFFECTS OF CL-316243 ON GLUCOSE UPTAKE R1213 by 10.220.33.2 on May 8, 2017 http://ajpregu.physiology.org/ Downloaded from

Determinations of plasma levels of glucose, FFA, and insulin. Plasma glucose levels were measured with a glucose analyzer (Beckman, Brea, CA). Insulin levels were determined by RIA (Incstar, Stillwater, MN). FFA levels were determined using a nonesterified fatty acid kit (Wako Chemicals, Dallas, TX).

Hyperinsulinemic-euglycemic clamps. The clamps were performed in unanesthetized, undisturbed, unrestrained rats. About 0.5 h before the experiment, polyethylene extension tubes were connected to the indwelling catheters of the jugular vein (PE-50) and carotid artery (PE-10). A four-way stopcock was used to infuse glucose, insulin, and radioabeled tracers into the jugular vein, whereas the carotid artery was used for blood withdrawal. A first blood sample was taken and analyzed on the glucose analyzer. Then, insulin (100 μU·kg⁻¹·min⁻¹) and glucose (2.78 M) were infused in parallel. The rate of glucose infusion was adjusted to maintain euglycemia (5.3–6.6 mM), and blood glucose concentration was tested at 5-min intervals. Sixty minutes after the initiation of the hyperinsulinemic-euglycemic clamp, [2-3H]DG and [14C]sucrose were intravenously injected for measurements of the rates of glucose uptake in peripheral tissues, as described above.

Statistics. The data were statistically analyzed using either the unpaired t-test or one-way ANOVA followed by the Fisher’s protected least-significant difference post hoc test. Results are expressed as means ± SE.

RESULTS

Effects of CL on body weights, food intake, and tissue weights. Total body weights, daily food intake values, and the weights of several adipose depots were markedly increased in the obese rats (Table 1). However, the individual weights of all six skeletal muscles studied were decreased, whereas the weights of the diaphragm, the heart, and the liver were not significantly different. CL treatment (1 mg·kg⁻¹·day⁻¹ for 14 days) significantly decreased body weight gain much more in obese than in lean rats. It also decreased the mean value of daily food intake in the obese, but not in the lean rats. However, this decrease mainly occurred during the first 2–3 days of the 2-wk treatment period (daily food intake values were not statistically significant between treated and untreated obese rats from day 3 to day 14, not shown). In obese rats, CL increased interscapular BAT weight, but decreased the weights of epididymal and retroperitoneal WAT depots as well as that of the liver. It also slightly increased the mass of several muscles and that of the heart. In lean rats, CL did not significantly affect food intake and body weight gain, but it decreased epididymal and retroperitoneal WAT weight, slightly decreased the weight of the gastrocnemius muscle, and did not affect the weights of other organs.

Effects of CL on the total protein content and cytochrome oxidase activity in BAT and WAT. In previous studies, we found that total cytochrome oxidase activity
Effects of CL treatment on body weight gain, food intake, and tissue weights in lean and obese ZDF rats

Table 1. Effects of CL treatment on body weight gain, food intake, and tissue weights in lean and obese ZDF rats

<table>
<thead>
<tr>
<th></th>
<th>Lean (6)</th>
<th>Lean-CL (6)</th>
<th>Obese (5)</th>
<th>Obese-CL (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weights before treatments</td>
<td>372.7 ± 9.5</td>
<td>376.7 ± 6.5</td>
<td>454.6 ± 16.4</td>
<td>483.6 ± 5.8</td>
</tr>
<tr>
<td>Body weight gain</td>
<td>13.3 ± 2.9</td>
<td>7.2 ± 3.3</td>
<td>-7.4 ± 8.0§</td>
<td>-53.4 ± 5.7§</td>
</tr>
<tr>
<td>Daily food intake during the treatments</td>
<td>18.4 ± 0.3</td>
<td>19.5 ± 0.3</td>
<td>33.9 ± 2.2§</td>
<td>27.1 ± 1.8§</td>
</tr>
<tr>
<td>Tissue weights</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interscapular BAT</td>
<td>0.40 ± 0.03</td>
<td>0.46 ± 0.02</td>
<td>1.00 ± 0.13§</td>
<td>1.358 ± 0.44§</td>
</tr>
<tr>
<td>Epididymal WAT</td>
<td>1.96 ± 0.13</td>
<td>1.31 ± 0.10*</td>
<td>4.88 ± 0.26§</td>
<td>4.13 ± 0.20§</td>
</tr>
<tr>
<td>Retroperitoneal WAT</td>
<td>1.48 ± 0.05</td>
<td>0.31 ± 0.03†</td>
<td>5.10 ± 0.37§</td>
<td>2.91 ± 0.12§</td>
</tr>
<tr>
<td>Soleus</td>
<td>0.17 ± 0.01</td>
<td>0.17 ± 0.01</td>
<td>0.14 ± 0.01§</td>
<td>0.16 ± 0.01</td>
</tr>
<tr>
<td>Plantaris</td>
<td>0.39 ± 0.01</td>
<td>0.38 ± 0.01</td>
<td>0.24 ± 0.01§</td>
<td>0.27 ± 0.01§</td>
</tr>
<tr>
<td>Red gastrocnemius</td>
<td>0.71 ± 0.01</td>
<td>0.68 ± 0.01*</td>
<td>0.49 ± 0.01§</td>
<td>0.54 ± 0.01§</td>
</tr>
<tr>
<td>White gastrocnemius</td>
<td>1.07 ± 0.01</td>
<td>1.01 ± 0.02*</td>
<td>0.73 ± 0.02§</td>
<td>0.81 ± 0.02§</td>
</tr>
<tr>
<td>Tibialis</td>
<td>0.76 ± 0.02</td>
<td>0.73 ± 0.01</td>
<td>0.53 ± 0.01§</td>
<td>0.57 ± 0.01*§</td>
</tr>
<tr>
<td>Extensor digitorum longus</td>
<td>0.44 ± 0.01</td>
<td>0.43 ± 0.01</td>
<td>0.32 ± 0.01§</td>
<td>0.34 ± 0.01§</td>
</tr>
<tr>
<td>Diaphragm</td>
<td>0.42 ± 0.01</td>
<td>0.43 ± 0.02</td>
<td>0.41 ± 0.03</td>
<td>0.42 ± 0.01</td>
</tr>
<tr>
<td>Heart</td>
<td>1.11 ± 0.03</td>
<td>1.12 ± 0.04</td>
<td>1.11 ± 0.03</td>
<td>1.24 ± 0.03*§</td>
</tr>
<tr>
<td>Liver</td>
<td>11.16 ± 0.29</td>
<td>11.01 ± 0.27</td>
<td>19.23 ± 1.22</td>
<td>16.79 ± 0.77</td>
</tr>
</tbody>
</table>

All values represent means ± SE (in g). Numbers in parentheses indicate number of rats in each group. * and †Significant differences from rats of same phenotype; ‡ and §significant differences from lean rats at P < 0.05 or P < 0.01 levels, respectively.

Table 2. Effects of CL on protein and cytochrome oxidase content of BAT and WAT depots in lean and obese ZDF rats

<table>
<thead>
<tr>
<th>Tissues</th>
<th>Lean (6)</th>
<th>Lean-CL (6)</th>
<th>Obese (5)</th>
<th>Obese-CL (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interscapular BAT</td>
<td>16.8 ± 0.7</td>
<td>22.0 ± 3.7</td>
<td>10.3 ± 2.4</td>
<td>27.3 ± 2.2†</td>
</tr>
<tr>
<td>Total proteins, mg</td>
<td>24.5 ± 0.9</td>
<td>52.0 ± 7.9†</td>
<td>8.7 ± 1.1‡</td>
<td>46.8 ± 1.1†</td>
</tr>
<tr>
<td>Total cytochrome oxidase content, µmol O₂/min</td>
<td>52.1 ± 8.5</td>
<td>51.2 ± 7.6</td>
<td>25.5 ± 7.1‡</td>
<td>51.2 ± 1.6*‡</td>
</tr>
<tr>
<td>Epididymal WAT</td>
<td>0.32 ± 0.07</td>
<td>0.43 ± 0.08</td>
<td>0.24 ± 0.05</td>
<td>1.07 ± 0.27†§</td>
</tr>
<tr>
<td>Total proteins, mg</td>
<td>22.0 ± 2.2</td>
<td>15.2 ± 1.5</td>
<td>40.5 ± 12.9</td>
<td>98.5 ± 15.1†§</td>
</tr>
<tr>
<td>Total cytochrome oxidase content, µmol O₂/min</td>
<td>0.13 ± 0.02</td>
<td>0.23 ± 0.03*§</td>
<td>0.30 ± 0.06§</td>
<td>0.71 ± 0.05§</td>
</tr>
</tbody>
</table>

All values represent means ± SE. Numbers in parentheses indicate number of rats in each group. * and †Significant differences from rats of same phenotype; ‡ and §significant differences from lean rats at P < 0.05 or P < 0.01 levels, respectively.
Effects of CL on the glucose and insulin responses to an IVGTT in lean and obese ZDF rats. CL treatment markedly decreased the glucose response in obese ZDF rats during an IVGTT (Fig. 2). This effect was evident at all time points after the intravenous injection of glucose, as well as when the data were expressed as total surfaces under the glucose curve (Fig. 2, inset). In lean rats, the β_3-agonist slightly decreased plasma glucose levels at several, but not all, time points after glucose administration, resulting in a small, statistically nonsignificant, decrease in the total glucose area. Similarly, CL decreased the insulin response, mainly in obese animals (Fig. 3). Thus both the glucose and insulin responses were significantly decreased in treated obese ZDF rats, providing a first indication that CL increases insulin responsiveness in these animals.

Effects of CL on the R_{g} of obese ZDF rats under hyperinsulinemic-euglycemic clamp conditions. To further assess whether CL increases insulin responsiveness (V_{max}) in peripheral tissues of obese rats, hyperinsulinemic-euglycemic clamps were performed and the R_{g} was measured using the [2-3H]DG method (28, 29). A new set of obese rats was infused either with the β_3-agonist or with vehicle for a slightly shorter period of time (12 days), but using the same dose and infusion rate as in the preceding experiment (1 mg·kg$^{-1}$·day$^{-1}$). The untreated obese rats were so resistant to insulin that they had to be infused with relatively high insulin doses to decrease their plasma glucose concentrations to normoglycemic levels (5.5–6 nM), resulting in plasma insulin levels close to the insulin V_{max} for net glucose utilization (28) (Fig. 4). Thus, when steady-state conditions were reached, the glucose and insulin concentrations were similar in both groups. However, the amount of glucose that had to be infused to maintain euglycemia was nearly four times higher in CL-treated rats than in untreated animals, indicating that CL-treatment significantly enhanced insulin responsiveness. Under these conditions, the [2-3H]DG tests revealed that CL markedly increased the R_{g} in interscapular BAT (~20-fold), various adipose depots (1- to 3-fold), several muscles (1- to 2-fold), but not in the heart (Figs. 5 and 6).

DISCUSSION

The main goal of the present studies was to determine whether treatment of diabetic rats with CL exerts a beneficial effect in a new rat model of type II diabetes.
METHODS. Data represent plasma glucose and insulin levels as well as hyperinsulinemic-euglycemic clamps combined with the [2-3H]deoxy-glucose method were performed as described in MATERIALS AND METHODS. Data represent plasma glucose and insulin levels as well as the glucose infusion rates when steady-state conditions were reached, −60 min after the beginning of the clamps. ** P < 0.01, statistically significant differences between different treatments (treated or not treated with CL).

To investigate, in a second step, the mechanisms of action of this selective β3-agonist. In the first series of experiments, we found that CL, when given for 2 wk to ZDF diabetic rats, normalizes their plasma glucose levels and significantly decreases their plasma insulin and FFA concentrations (Fig. 1). These observations agree with previous findings, showing that β3-agonists display antidiabetic effects in various animal models of type II diabetes (1, 48). In the present experiments, CL treatment improved not only basal glycemia, but also glucose tolerance (Fig. 2). During the entire IVGTT, both plasma glucose and insulin concentrations of treated rats remained decreased in comparison with untreated animals, providing a first indication that CL improves insulin responsiveness in peripheral tissues.

This conclusion was supported by the hyperinsulinemic-euglycemic clamp experiments (Figs. 4–6). They revealed that CL markedly increased insulin responsiveness: nearly four times more glucose had to be infused to achieve euglycemia. It was very difficult in the clamp experiments to significantly reduce the elevated glycemia of untreated obese rats without increasing plasma insulin concentrations to levels close to the insulin Vmax for net glucose utilization (28). This situation is rather different from what happens with other rat models of obesity that generally develop milder forms of insulin resistance not associated with frank diabetes. Nevertheless, the fact that chronic CL treatment normalized plasma glucose levels in ~2 wk (Figs. 1–3) is remarkable in view of the marked insulin resistance of obese ZDF rats.

The maximal capacity of various tissues for glucose uptake in CL-treated animals varied with the following order: BAT > heart > diaphragm > skeletal muscles > WAT. This sequence of potencies agrees with previous observations made with normal rats treated with insulin (54) or norepinephrine (33) as well as with cold-exposed animals (55). It shows that BAT possesses a remarkable capacity for glucose utilization, either for storing it in the form of triglycerides or for oxidizing it for thermogenesis (in cold-exposed animals or in warm-exposed animals treated with norepinephrine or β3-agonists) (5, 24, 33, 55). In vitro studies confirmed that both insulin and norepinephrine stimulate glucose uptake and revealed that a very low (nanomolar) norepinephrine concentration potentiates the glucose stimulatory effects of insulin (35). This suggests that norepinephrine facilitates glucose entry into brown adipocytes by stimulating thermogenesis, fatty acid oxidation, and glycolysis. It is likely that CL acts in a fashion similar to that of norepinephrine, with the exception that this selective β3-agonist is not expected to activate β1-adrenergic pathways. However, maximal thermogenesis can be achieved in isolated brown adipocytes by stimulating them either with β1- or β3-agonists (3).

The mechanism by which CL improves insulin responsiveness and glucose uptake by peripheral tissues appears to be similar to that occurring during cold acclimation of warm-acclimated rats. Similar to long-term CL treatment, chronic cold exposure (4–5°C) improves glucose tolerance, increases insulin sensitiv-
ity, stimulates glucose uptake in peripheral tissues (BAT, WAT, skeletal muscles, and heart), and reverses the diabetogenic effects of high-fat feeding (44, 52–55). It exerts these beneficial effects despite the fact that it decreases plasma insulin concentration and increases norepinephrine levels. Chronic cold exposure also stimulates mitochondrial proliferation and mitochondrial uncoupling protein content (4–5°C) (16, 17, 22, 25). Furthermore, in CL-treated animals (Figs. 5 and 6), as in cold-exposed rats (54, 55), glucose uptake is increased much more in BAT (by 1–2 orders of magnitude) than in WAT or muscles. This order of potency agrees with the fact that BAT capacity for nonshivering thermogenesis is much higher than that of WAT or muscles. Cold exposure stimulates the release of norepinephrine from sympathetic nerves and consequently increases nonshivering thermogenesis in BAT and WAT, not only via β3-, but also via β1- adrenergic pathways (β2-ARs are undetectable in brown adipocytes) (10, 24, 30, 31). Although the affinity of β1-ARs for norepinephrine is much higher than that of β2-ARs, the latter are ~10 times more numerous and appear to be resistant to catecholamine-induced desensitization or downregulation (9, 10, 23, 30, 39, 40). In muscles, norepinephrine may stimulate nonshivering thermogenesis and glucose uptake via β2-ARs and/or atypical (β4-)-ARs (12, 27, 34, 45, 54). Thus it is likely that CL mimics the β3-effects of norepinephrine in BAT and WAT, but its stimulatory effects in muscles are probably indirect because this tissue lacks typical β3-ARs. Most probably, the decrease in FFA levels induced by CL treatment (Fig. 1) enhances glucose uptake in muscles via the so-called Randle’s effect or glucose-fatty acid cycle (42). However, this remains to be directly demonstrated.

A question that is often raised is how a potent lipolytic agent, such as CL, decreases the levels of circulating fatty acids instead of increasing them. We believe that this paradox is merely apparent because, in addition to stimulating lipolysis, β3-agonists markedly stimulate thermogenesis, particularly in BAT (3, 18, 19, 26, 46). Fatty acids represent the principal substrates used for thermogenesis by BAT (50), and activation of nonshivering thermogenesis by norepinephrine or β3-agonists stimulates fatty acid oxidation, decreases the circulating levels of fatty acids, and diminishes triglyceride stores in adipose tissues. Using an oxygen consumption system for continuously monitoring daily oxygen consumption in rats (43), we recently found that CL does in fact stimulate 24-h oxygen consumption in obese ZDF rats when infused during 14 days under the same experimental conditions as in the present experiments (11). Remarkably, the enhancement of oxygen consumption progressively increased from ~10% above basal values during the first 4 days of the infusion to 35% during the last 4 days (days 10–14). This progressive increase was accompanied by a parallel increase in total tissue cytochrome oxidase activity and uncoupling protein content, not only in BAT, but also in several WAT depots, confirming previous observations (26). We therefore hypothesize that CL exerts its beneficial action by 1) acutely enhancing thermogenesis in BAT, WAT, and possibly also other tissues and 2) by restoring to normal the defective BAT thermogenic capacity, as evidenced by its remarkable effect on total tissue cytochrome oxidase activity (Table 2). The fact that CL did not reduce hyperglycemia in diabetic ZDF rats at short term (single injection or infusion for <1 wk) strongly suggests that the β3-agonist acts by progressively stimulating mitochondrial biogenesis in BAT and restoring to normal the defective thermogenic capacity of obese rats (4, 36, 37). Another explanation for the increased FFA levels in obese rats chronically treated with CL could be based on the increased insulin responsiveness of adipose tissues. Insulin is a potent antilipolytic hormone, and the increased insulin responsiveness induced by CL treatment may contribute to decreased lipolysis and plasma FFA levels.

The observation that CL augmented glucose uptake ~10 times more in BAT than in WAT (per gram of tissue) (Fig. 5) agrees with the observations that BAT possesses a much higher capacity for heat production than WAT (Table 2, cytochrome oxidase data). Quantitatively, WAT may still represent a significant site of glucose and fat oxidation, because it is much more abundant than BAT, although it is difficult to precisely estimate the relative proportion of WAT versus BAT, particularly in obese rats. Nevertheless, the muscles remain the main anatomic site of glucose uptake in CL-treated rats under the clamp conditions described in Figs. 3–5. On the assumption that the muscles, WAT, and BAT, respectively, represent 30, 40, and 1% of the body weight of obese rats and by averaging the individual glucose uptake values for different types of muscles and fat depots investigated, it can roughly be estimated that total BAT and WAT combined represent ~20% of glucose uptake in muscles (BAT 10% and WAT 10%).

In summary, it is concluded that chronic, but not short-term, CL treatment normalizes glycemia and increases insulin responsiveness and glucose uptake in adipose tissues and muscles, but not in the heart, of obese ZDF rats. It is suggested that the β3-agonist progressively increases the defective mitochondrial oxidative capacity in BAT and WAT of diabetic animals, thereby increasing energy expenditure and fat oxidation, and, consequently, reducing plasma FFA levels. This may lead to an enhancement of glucose utilization by skeletal muscles via the glucose fatty acid cycle. Although human β3-ARs appear to be different from rat β3-ARs, selective β3-agonists such as CL-316243 may represent useful agents for the treatment of obesity and type II diabetes (6, 32).

Perspectives

When we started to investigate the effects of cold exposure on glucose metabolism a few years ago, we had no idea that one day catecholamines or β-adrenergic agonists would represent potential agents for normalizing plasma glucose levels in type II diabetes. At that time, catecholamines, glucagon, and other lipolytic hormones were considered counterregulatory hormones, because they inhibited, generally at high phar-
macromolecular doses, the beneficial effects of insulin. It took several years to demonstrate that the main effector of the stimulation of glucose uptake by peripheral tissues in cold-exposed animals was norepinephrine secreted from sympathetic nerves. The idea that physiological conditions (cold exposure, exercise) or drugs (adrenergic agonists) activating mitochondrial ATP synthesis or heat production also stimulate glucose utilization in muscles and adipose tissues has opened and still opens new avenues for developing more efficient and more selective antidiabetic drugs. In recent years, adipose tissues (brown or white) have been the focus of much attention, probably because they are unique in possessing both β3-ARs and the uncoupling protein 1 (UCP 1). This particular combination allowed the development of drugs that selectively stimulate thermogenesis and glucose uptake in adipose tissues. However, the recent finding that the skeletal muscles express two new uncoupling proteins (UCP 2 and 3) (8, 13, 20, 56), which are possibly linked to atypical (β3)-ARs (different from β1-, β2-, or β3-ARs), will provide additional research opportunities for developing new drugs facilitating glucose uptake directly in the skeletal muscles that represent the main anatomic sites of glucose utilization in humans as well as laboratory animals.

The authors thank Drs. A. Marette and C. Atgï¿½ for assistance in part of these studies. This study was supported by grants from the Canadian Diabetes Association and the Medical Research Council of Canada. Address for reprint requests: L. J. Bukowiecki, Dept. of Physiology, Faculty of Medicine, Laval Univ., Quï¿½bec City, Canada G1K 7P4. Received 2 June 1997; accepted in final form 26 January 1998.

REFERENCES

