Abnormal platelet Ca\(^{2+}\) handling accompanied by increased cytosolic free Mg\(^{2+}\) in essential hypertension

HIROYUKI HIRAGA, TETSUYA OSHIMA, MITSUISA YOSHIMURA, HIDEO MATSUURA, AND GORO KAJIYAMA

First Department of Internal Medicine and Department of Clinical Laboratory Medicine, Hiroshima University School of Medicine, Hiroshima 734, Japan

Hiraga, Hiroyuki, Tetsuya Oshima, Mitsuisa Yoshimura, Hideo Matsuura, and Goro Kajiyama. Abnormal platelet Ca\(^{2+}\) handling accompanied by increased cytosolic free Mg\(^{2+}\) in essential hypertension. Am. J. Physiol. 275 (Regulatory Integrative Comp. Physiol. 44): R574–R579, 1998.—To test the hypothesis that abnormal platelet Ca\(^{2+}\) handling in essential hypertension results from cellular Mg\(^{2+}\) deficiency, cytosolic free Mg\(^{2+}\) concentration ([Mg\(^{2+}\)]) and Ca\(^{2+}\) metabolism were studied in mag-fura 2 and fura 2-loaded platelets from 30 essential hypertensive patients and 30 sex- and age-matched normotensive controls. Basal cytosolic free Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]) intracellular Ca\(^{2+}\) discharge capacity were higher in hypertensives than in normotensives (22 ± 5 vs. 18 ± 5 nM, P < 0.05; 743 ± 250 vs. 624 ± 144 nM, P < 0.05, respectively). The thrombin (0.03–1.0 U/ml)-evoked [Ca\(^{2+}\)]\(_{i}\) response was also enhanced in platelets from hypertensives in both the absence and presence of extracellular Ca\(^{2+}\). However, basal [Mg\(^{2+}\)], was higher in hypertensives than in normotensives (437 ± 110 vs. 353 ± 85 μM, P < 0.05), whereas serum Mg\(^{2+}\) was similar in the two groups. These results oppose the Mg\(^{2+}\) deficiency hypothesis in platelets in essential hypertension.

platelets; mag-fura 2; fura 2

IN THE LAST SEVERAL DECADES, abnormal Ca\(^{2+}\) handling in many cell types from human subjects and animal models of primary hypertension has been reported and proposed as a factor in the pathogenesis of hypertension. Platelets are often used in the study of cellular cation metabolism in hypertension, because they are readily available for study and are thought to share a number of features with vascular smooth muscle cells (20). Most investigators have reported that basal levels of cytosolic free Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]) are higher in human subjects with essential hypertension than in normotensive subjects (5, 8, 11, 16, 30) and that there is a positive correlation between blood pressure and platelet [Ca\(^{2+}\)] (5, 11). However, the reported values for hypertensives and normotensives cited in these studies vary widely, probably because of methodological differences. The mechanisms that contribute to evoked [Ca\(^{2+}\)] under stimulated conditions differ from those that regulate basal [Ca\(^{2+}\)], and it is unclear whether the small difference between cells from hypertensives and those from normotensives in basal [Ca\(^{2+}\)] reflects a difference in the activated state associated with cell function. Therefore measurements of both basal [Ca\(^{2+}\)], and [Ca\(^{2+}\)] responses to agonists are important for any analysis of abnormalities in cellular Ca\(^{2+}\) handling.

Mg\(^{2+}\) has recently been reported to play an important role in the pathogenesis of essential hypertension. Altura et al. (1) reported that a deficiency in dietary Mg\(^{2+}\) can cause hypertension. Joffers et al. (15) showed an inverse relationship between dietary intake of Mg\(^{2+}\) and blood pressure. Because cellular Mg\(^{2+}\) is an essential cofactor in many cell functions, it is possible that abnormal Mg\(^{2+}\) handling at the cellular level may cause elevated blood pressure in hypertensive patients. Mg\(^{2+}\) deficiency has been reported to occur at both the serum and intraerythrocyte levels in hypertensives (28, 29), but serum or intraerythrocyte total magnesium may not accurately represent cellular magnesium activity (4). Because serum magnesium represents <1% of total body magnesium and protein-bound and anion complex magnesium is unavailable for biochemical processes, it is important to evaluate the levels of cytosolic free magnesium concentration ([Mg\(^{2+}\)]) exhibiting biological activity.

To test the hypothesis that a deficiency of [Mg\(^{2+}\)], is involved in abnormal Ca\(^{2+}\) handling as the pathogenesis of essential hypertension, we compared platelet [Mg\(^{2+}\)], and [Ca\(^{2+}\)] between essential hypertensive patients and normotensive controls.

MATERIALS AND METHOD

Subjects. We studied 30 patients with essential hypertension (15 men, 15 women, mean age 51 ± 11 yr) and 30 sex- and age-matched normotensive controls (15 men, 15 women, mean age 50 ± 13 yr). Normotensive controls were recruited from healthy subjects who underwent annual physical examinations. Hypertension was defined as systolic blood pressure ≥160 mmHg and/or diastolic blood pressure ≥95 mmHg on each of three consecutive clinical visits. We measured blood pressure with a mercury sphygmomanometer in sitting subjects at least five times during each clinical visit and used the average value of these measurements. The blood pressure in normotensives was consistently <140/90 mmHg. None of the hypertensives or normotensives had received any medication for at least 4 wk before the study. Subjects with secondary forms of hypertension were excluded by careful clinical examination. Hypertensive patients and normotensive controls were maintained on a regular diet with an intake of 170 mmol/day NaCl to allow stabilization of the systemic Na\(^{+}\) balance, and they ingested constant amounts of K\(^{+}\) (2,000 mg/day), Ca\(^{2+}\) (500 mg/day), and calories (40 kcal/kg) for 7 days before the study. Venous blood was collected from fasting and resting subjects, slowly and steadily via a 19-gauge needle into a syringe containing 3.8% trisodium citrate (1:9 by vol, total 30 ml), using a two-syringe method (21) to separate platelets for measurement of [Mg\(^{2+}\)], and [Ca\(^{2+}\)]. Blood samples were centrifuged at room temperature for 5 min at 800 g and [Mg\(^{2+}\)] and [Ca\(^{2+}\)] were measured by use of the resultant platelet-rich plasma. To minimize any time-dependent effects on platelet responsiveness and leakage of dyes, measurements of platelet [Mg\(^{2+}\)], and [Ca\(^{2+}\)], were performed separately by two independent investigators (HH measured [Ca\(^{2+}\)]; MY measured [Mg\(^{2+}\)]) in the same blood
samples within 2 h after blood collection. Serum concentrations in electrolytes and lipids and mean platelet volume were measured by automated methods, and plasma aldosterone concentration and plasma aldosterone concentration were assayed by RIA in another blood sample.

Measurement of platelet [Ca\(^{2+}\)]. Platelet [Ca\(^{2+}\)] was measured as described previously (13, 21, 22). In short, platelet-rich plasma prepared as described above was layered onto a Sepharose 2B-CL column (Pharmacia LKB Biotechnology, Uppsala, Sweden) that had been equilibrated with medium containing (in mM) 145 NaCl, 10 HEPES, 5 KCl, 5 glucose, and 1 MgSO\(_4\) (pH 7.4) at room temperature. Washed platelets were eluted from this column with buffer and incubated at 37°C with 1 mM fura 2-AM (Molecular Probes, Eugene, OR) and 0.02% Pluronic F-127 (Molecular Probes) for 30 min at a platelet concentration of 10\(^6\) cells/mL. After platelets had again been washed by gel filtration to remove any extracellular fura 2-AM, the platelet count was adjusted to 10\(^7\) cells/mL, and CaCl\(_2\) was added to the cell suspension at a final concentration of 1 mM. Incubation at 37°C for 7 min was performed to complete the hydrolysis of fura 2-AM, and platelet suspensions were then placed in cuvettes with stirrers at 37°C. Fluorescence was measured with a dual-excitation wavelength fluorometer (RF-5000, Shimadzu, Kyoto, Japan), using excitation wavelengths of 340 and 380 nm under Ca\(^{2+}\). The discharge capacity of Ca\(^{2+}\) from intracellular Ca\(^{2+}\) stores at 37°C was determined by the addition of 10 mM EGTA after adjustment of the pH to 7.4 in intact cell suspension to the change in the total dye in the tube (after cell lysis with digitonin) was regarded as the percentage of extracellular dye in the total dye (21). The calculated fluorescent signal of external dye was then subtracted from the original signal in the cell suspension. Cytosolic fura 2 concentration was estimated by comparing the fluorescence signal at 340 nm in the presence of 1 mM Ca\(^{2+}\) after cell lysis with that of a known concentration of fura 2.

In the preliminary study, to determine whether citrate alone is sufficient to prevent cell activation during the preparation of platelets, we studied the effects of other anticoagulant agents on Ca\(^{2+}\) handling by gel-filtered platelets of essential hypertensives and normotensives. Platelet-rich plasma was divided into two batches. Apyrase (20 µg/mL), hirudin (0.05 U/mL), and PGI\(_2\) (1 µM) were added to one batch, and no agent was added to the other batch. These conditions were maintained during fura 2 loading. After the cells were gel filtered, [Ca\(^{2+}\)] was determined in the two batches. There was no effect of the anticoagulant cocktail on basal [Ca\(^{2+}\)], or thrombin (0.1 U/mL)-stimulated [Ca\(^{2+}\)] in seven subjects with essential hypertension (percentage of control: 101 ± 3 and 98 ± 5%, respectively) and eight normotensive controls (100 ± 4 and 99 ± 4%, respectively). We thus concluded that the use of citrate alone may be sufficient to inhibit [Ca\(^{2+}\)] elevation induced by cell activation, when gel filtration is used to separate platelets.

Measurement of platelet [Mg\(^{2+}\)]. The washed platelets were incubated at 37°C with 2 µM mag-fura 2-AM (Molecular Probes) and 0.02% Pluronic F-127 for 30 min at a platelet concentration of ~5 × 10\(^7\) cells/mL. Platelet suspensions were then washed again to remove extracellular mag-fura 2-AM, and CaCl\(_2\) was added at a final concentration of 1 mM after resuspension of platelets in HEPES buffer at a platelet concentration of 10\(^7\) cells/mL. Platelet suspensions (3 ml) were then placed in cuvettes and stirred magnetically at 37°C. Fluorescence was measured with a dual-excitation wavelength fluorometer (DM3000CM, SPEX, Edison, NJ), as described above. [Mg\(^{2+}\)] was calculated using the following equation from Raju et al. (24).

$$[\text{Mg}^{2+}] = K_d \cdot (R - R_{\text{min}})/R_{\text{max}} - R \cdot S_f/S_b$$

where K_d represents the dissociation constant of fura 2 for Ca\(^{2+}\) (224 nM) and R_{max} and R_{min} are the ratios of fluorescence at 340 and 380 nm under Ca\(^{2+}\)-saturated and Ca\(^{2+}\)-free conditions, respectively. S_f and S_b are the fluorescence intensities at 380 nm for fura 2 with concentrations of zero and 10 mM Mg\(^{2+}\), respectively. R_{max} was determined with 50 µM digitonin in the presence of 1 mM Ca\(^{2+}\). R_{min} was then determined by the addition of 10 mM EGTA after adjustment of pH to 8.3 with 30 mM Tris. Corrections were applied for extracellular fura 2 leaked from platelets because of EGTA usage and for autofluorescence by subtracting the fluorescence values of the unloaded platelets and test reagents (21, 22).

Rapid initial drop in the fluorescence signal at 340 nm after EGTA addition was considered to reflect the contribution of extracellular dye as extracellular Ca\(^{2+}\) was chelated. The ratio of the fluorescence change after EGTA at pH 7.4 in intact cell suspension to the change in the total dye in the tube (after cell lysis with digitonin) was regarded as the percentage of extracellular dye in the total dye (21). The calculated fluorescent signal of external dye was then subtracted from the original signal in the cell suspension. Cytosolic fura 2 concentration was estimated by comparing the fluorescence signal at 340 nm in the presence of 1 mM Ca\(^{2+}\) after cell lysis with that of a known concentration of fura 2.
of mag-fura 2 or fura 2 (31.9 ± 1.7 vs. 9.3 ± 5.12 μM). Thrombin (0.03, 0.1, 0.3, and 1.0 U/ml)-evoked
Rmax was a considerable overlap in distribution between hypertensive and normotensive control groups. No
differences were detected in the concentrations of platelet intracellular mag-fura 2 or fura 2 (hypertensives vs.
normotensives: 402 ± 42 vs. 390 ± 45, 493 ± 81 vs. 512 ± 61 μM, respectively) or in extracellular leakage
of mag-fura 2 or fura 2 (31.0 ± 4.4 vs. 30.0 ± 3.7, 8.6 ± 1.7 vs. 9.3 ± 1.7%), Rmax of mag-fura 2 or fura 2 (31.9 ±
38 vs. 32.4 ± 3.5, 39.3 ± 10.0 vs. 35.7 ± 9.7), or Rmin of mag-fura 2 or fura 2 (0.72 ± 0.02 vs. 0.73 ± 0.02, 0.83 ±
0.05 vs. 0.83 ± 0.05), indicating that platelets were loaded with the dyes to a similar extent in the two
groups.

Platelet basal [Ca2+]i, was significantly higher in the hypertensive group than in the normotensive group
(22.3 ± 5.3 vs. 17.8 ± 5.3 nM; Fig. 2), although there was a considerable overlap in distribution between
groups. Thrombin (0.03, 0.1, 0.3, and 1.0 U/ml)-evoked [Ca2+]i responses were significantly enhanced in the
hypertensive group in the presence or absence of extracellular Ca2+ (Fig. 3, A and B). Differences in [Ca2+]i,
increase between the presence and absence of extracellular Ca2+, representing thrombin-evoked external Ca2+
influx, were also enhanced in the hypertensive group (Fig. 3C); i.e., external Ca2+ influx and discharge of
Ca2+ from intracellular stores were both enhanced in thrombin-stimulated platelets from the hypertensive
group. The discharge capacity of Ca2+ from intracellular storage sites, which was assessed by the [Ca2+]i response to the addition of 5 μM ionomycin in a Ca2+-free medium, was greater in the hypertensive than the
normotensive group (743.0 ± 250.4 vs. 624.2 ± 144.2 nM). However, basal [Mg2+]i was significantly higher in
hypertensives than in normotensives (436.6 ± 109.9 vs. 353.0 ± 85.3 μM, Fig. 4), whereas serum total Mg2+ was
similar in the two groups (Table 1).

DISCUSSION

We (19) and other investigators (5, 9) have reported an increase in the intracellular concentration of Na+
and in basal [Ca2+]i in blood cells, such as platelets and lymphocytes, of subjects with essential hypertension.
In the present study, the basal [Ca2+]i in platelets was elevated in hypertensive subjects, confirming most
previous results (5, 8, 11, 16, 30). However, there was a considerable overlap in distribution between
hypertensives and normotensives. This overlap may be due to the heterogeneity of essential hypertension,
which should not be regarded as a single disease entity. Essential hypertensive patients have heterogeneity in
several factors, such as renin status (19), blood pressure level (5), age (2), and salt intake (20), each of which
may influence intracellular cation characteristics and are difficult to control precisely.

The mechanisms that contribute to increased [Ca2+]i under stimulated conditions are different from those
regulating basal [Ca2+]i. Most previous reports have been limited to the measurement of basal [Ca2+]i. Even
in a few previous studies with stimulated platelets, the status of the [Ca2+]i response was controversial: an
enhanced [Ca2+]i response to thrombin was reported by Lechi et al. (16) and to ANG II by Touyz and Schiffrin
(30) in platelets from hypertensive patients, whereas
Haller et al. (8) showed that the change in \([\text{Ca}^{2+}]_i\) in response to thrombin was similar in platelets from hypertensives and those from normotensives. In the present study, the evoked \([\text{Ca}^{2+}]_i\) responses to thrombin were enhanced in hypertensives, both in the absence and presence of extracellular \([\text{Ca}^{2+}]_i\). Platelets from hypertensive subjects exhibited not only an increase in basal \([\text{Ca}^{2+}]_i\) but also an enhanced \([\text{Ca}^{2+}]_i\) discharge from intracellular stores, an increase in \([\text{Ca}^{2+}]_i\) influx under thrombin-stimulated conditions, and an increase in intracellular \([\text{Ca}^{2+}]_i\) discharge capacity.

We have repeatedly emphasized that methodological issues are important in the assessment of \([\text{Ca}^{2+}]_i\) and \([\text{Mg}^{2+}]_i\) in fluorescent dye-loaded platelets (7, 13, 14, 18, 21). Accordingly, the present study was carried out so as to minimize platelet activation during blood collection by using a 19-gauge needle and a two-syringe method.

Attention must be paid to the possible activation of platelets and the coagulation system under the conditions of blood collection. Second, corrections were applied for extracellular leakage of dye, which leads to overestimations of \([\text{Ca}^{2+}]_i\) and \([\text{Mg}^{2+}]_i\) in the presence of extracellular \([\text{Ca}^{2+}]_i\) and \([\text{Mg}^{2+}]_i\) when a cell suspension system is used. Corrections for extracellular fura 2 should be made by using EGTA in agonist-stimulated conditions. Because \([\text{Mn}^{2+}]_i\) enters platelets via the \([\text{Ca}^{2+}]_i\) channel, \([\text{MnCl}_2]\) may be unsuitable for correction for dye leakage in estimating agonist responses. Third, in any comparison of \([\text{Mg}^{2+}]_i\) or \([\text{Ca}^{2+}]_i\) handling between hypertensives and normotensives, all aspects of intracellular dye metabolism, such as cytosolic fluorescent dye concentration and the degree of hydrolysis of fluorescence, should be similar in the two groups. The extent of dye ester hydrolysis affects fluorescence dynamics. However, many investigators have failed to clearly define the method of blood collection, correction for extracellular dye leakage, and the comparison of fluorescent dye metabolism. In the many reports concerning basal \([\text{Ca}^{2+}]_i\) in human platelets, the findings have been variable, ranging from 20 to 200 nM (5, 8, 11, 13, 16, 30). Our basal \([\text{Ca}^{2+}]_i\) level probably reflects improved methods with minimal activation of platelets and correction for dye leakage from platelets. Recent data from careful investigations of methods have shown basal \([\text{Ca}^{2+}]_i\) in human platelets as low as the level determined in our study (6, 11, 17, 27).

We have previously reported differences in abnormal \([\text{Ca}^{2+}]_i\) handling by fura 2-loaded platelets from several types of hypertensive rats (12, 21, 23). Basal \([\text{Ca}^{2+}]_i\) is increased in spontaneously hypertensive rats (21, 23) but decreased in Dahl salt-sensitive and DOCA-salt hypertensive rats (12) and similar in stroke-prone spontaneously hypertensive rats (17) compared with those from normotensive control rats. The evoked \([\text{Ca}^{2+}]_i\) responses to thrombin in the absence of extracellular \([\text{Ca}^{2+}]_i\) were enhanced in these three strains of hypertensive rats, whereas in the presence of extracellular \([\text{Ca}^{2+}]_i\),
the [Ca2+] increase was enhanced in spontaneously hypertensive rats (21, 23), decreased in Dahl salt-sensitive rats (12), and similar in DOCA-salt rats compared with values in normotensive control rats. Thus differences in platelet intracellular Ca2+ handling exist between strains of hypertensive rats, and platelets from models of hypertension do not always show an elevation of [Ca2+]. However, platelets from essential hypertensive subjects may be comparable to those from spontaneously hypertensive rats with respect to basal [Ca2+], and [Ca2+] responses to thrombin.

Mg2+ is an important constituent of cells and an essential cofactor in many cell functions, including the regulation of receptor systems, transmembrane flux of cation, and activation of cellular enzyme, since certain enzyme activity, including Ca2+-ATPase and Na+-K+-ATPase, depends entirely on Mg2+ (3) and Na+ transport and cellular Ca2+ handling, which may be affected by [Mg2+] (25). Rat studies have shown that a deficiency of dietary Mg2+ is associated with the development of hypertension (1). Epidemiological studies suggest an inverse relationship between the dietary intake of Mg2+ and blood pressure (15). One could therefore hypothesize that an Mg2+ deficiency is associated with a decrease in Ca2+-ATPase and Na+-K+-ATPase activity, an elevated cytosolic Ca2+ level, and hence an increase in vascular resistance in hypertensive patients. To test this hypothesis, [Mg2+] and Ca2+ metabolism were studied in platelets from hypertensive patients and normotensive controls matched for age and gender. Unexpectedly, [Mg2+] was elevated significantly in platelets from patients with essential hypertension; furthermore, serum total magnesium was similar in the hypertensive and normotensive groups. Thus we could not support the hypothesis that hypertension results from a cellular deficiency of Mg2+.

Resnick et al. (26, 27) previously described a decrease in intraerythrocyte concentration of free Mg2+ in essential hypertension based on studies employing nuclear magnetic resonance spectroscopy. Results contrary to ours may be due to differences in the cells used for [Mg2+], measurement. Furthermore, a few previous reports (11, 30) using mag-fura 2 have shown the decrease in [Mg2+], in platelets from subjects with essential hypertension. This discrepancy may result from differences in the methods used, such as isolation of platelets or correction for extracellular dye. In other reports (28, 29), intracellular Mg2+ measurement by atomic absorption spectroscopy represents intracellular total magnesium concentration, and this may not accurately reflect cellular Mg2+ activity, since protein-bound and anion complex magnesium are unavailable for biochemical processes, whereas free Mg2+ does have biological activity. Similarly, we could not find a significant difference between hypertensives and normotensives in serum total magnesium, which may not represent intracellular Mg2+ metabolism.

In summary, abnormal Ca2+ handling, including higher basal [Ca2+], enhanced thrombin-evoked [Ca2+], responses in the presence or absence of extracellular Ca2+, and a greater Ca2+ discharge capacity was observed in platelets from hypertensive patients. Platelet [Mg2+] was higher in hypertensives than in normotensives. Our data appear to negate the hypothesis that abnormal Ca2+ handling in platelets from hypertensive subjects results from a cellular Mg2+ deficiency.

Perspectives

Mg2+ deficiency has been recognized to be associated with the pathogenesis of several cardiovascular diseases, such as arrhythmia and coronary heart disease. Hypertension is an established risk factor for these cardiovascular diseases. In the present study, we have clarified the increased [Mg2+] in essential hypertension. Thus further studies are necessary to clarify the relation between systemic Mg2+ balance and cellular Mg2+ metabolism. The Mg2+ balance study might solve this problem. Furthermore, the reason for increased [Mg2+] in essential hypertension is not clear, since the precise mechanisms that regulate [Mg2+] are not fully understood. Intracellular ATP concentration and Mg2+/Na+ exchanger are reported to regulate [Mg2+]. These factors should be studied in the cardiovascular diseases and their risk factors.

We thank Y. Omura for secretarial assistance. This work was supported by Grants-in-Aid for Scientific Research 07407065 and 08457639 from the Ministry of Education, Science and Culture of Japan, and by grants from the Kurouzi Medical Foundation of J. pan and the Clinical Pathology Research Foundation of J. pan. Address for reprint requests: H. Hiraga, First Dept. of Internal Medicine, Hiroshima University School of Medicine, 1–2–3 Kasumi, Minami-ku, Hiroshima 734, Japan.

Received 27 November 1996; accepted in final form 1 April 1998.

REFERENCES