Effects of meal volume and posture on gastric emptying of solids and appetite

SELENA DORAN, KAREN L. JONES, JANE M. ANDREWS, AND MICHAEL HOROWITZ
Department of Medicine, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia

Doran, Selena, Karen L. Jones, Jane M. Andrews, and Michael Horowitz. Effects of meal volume and posture on gastric emptying of solids and appetite. Am. J. Physiol. 275 (Regulatory Integrative Comp. Physiol. 44): R1712–R1718, 1998.—The effects of volume and posture on gastric emptying and intragastric distribution of a solid meal and appetite were evaluated. Eight normal volunteers were studied on four occasions, on each of which a meal comprising ground beef mixed with tomato sauce of either 650 g ("large") or 217 g ("small") was eaten. Two studies were performed while the subject was lying in the left lateral decubitus position, and two studies were performed while the subject was sitting so that in each subject data were available for both meals and in both postures. Hunger and fullness were evaluated using a visual analog questionnaire. In both postures and after both meals, gastric emptying approximated a linear pattern after an initial lag phase. The lag phase was shorter for the large meal when compared with the small meal [sitting: large 13 ± 5 vs. small 29 ± 7 min; left lateral: large 16 ± 3 vs. small 24 ± 3 min, F(1,7) = 46.3, P < 0.0005]. In both postures the contents of the total [F(1,7) = 1794.5, P < 0.0001], proximal [F(1,7) = 203.7, P < 0.0001], and distal [F(1,7) = 231.5, P < 0.0001] stomach were greater after the large meal when compared with the small meal. Although the 50% emptying time was greater with the large than the small meal [F(1,7) = 40.8, P < 0.001], the postlag emptying rate (g/min) was more rapid with the large meal [sitting: large 1.7 ± 0.2 vs. small 1.1 ± 0.1 g/min; left lateral: large 1.8 ± 0.1 vs. small 1.3 ± 0.04 g/min, F(1,7) = 44.7, P < 0.0005]. There was a significant interaction between meal volume and posture for retention in the distal stomach [F(1,7) = 7.14, P < 0.05]. Contrasts were used to evaluate the effects of volume and posture between the four studies and demonstrated an effect of posture for the large [F(1,21) = 18.7, P < 0.005] but not the small [F(1,21) = 0.30, P = 0.60] meal so that the retention was greater in the sitting when compared with the left lateral position. The magnitude of the postprandial increase in fullness [F(1,7) = 7.8, P < 0.05] and reduction in hunger [F(1,7) = 5.9, P < 0.05] was greater with the large meal. We conclude that meal volume has a major effect on gastric emptying; in contrast posture has only a minor impact on intragastric meal distribution, which is observed only after a large meal, and no effect on gastric emptying.

Gravity; intragastric meal distribution; small intestinal feedback

There is relatively little information about the effects of alterations in meal composition or volume on the rate of gastric emptying. The emphasis of most previous studies has been on gastric emptying of liquids, which has been demonstrated to be affected by propulsive forces generated by intragastric volume and by gravity (1, 4, 14, 16, 17), as well as feedback from receptors in the small intestinal lumen (3, 20, 22). In dogs, it has been suggested that the time taken to grind solid food into small particles, so-called trituration, is the major factor regulating its emptying (21), implying that gastric emptying of solids, unlike that of liquids, is not "load-dependent" and that digestible solids normally empty from the stomach at a maximum rate (21). However, this hypothesis has not been tested in humans. In humans, the potential effects of posture and meal volume on gastric emptying of solids has hitherto only been assessed with mixed solid/liquid meals (7, 23, 24), and it is clear that the presence of liquid may modulate the rate of emptying of a solid meal (6, 8, 15).

Satiety signals from the gastrointestinal tract, triggered by gastric distension, and the interaction of nutrients with small intestinal receptors are important in the regulation of appetite (7, 9, 10, 19, 26, 27). There is some evidence that postprandial appetite may be influenced by posture, an effect that may be mediated by changes in intragastric meal distribution or the rate of gastric emptying (14).

The purpose of this study was to evaluate the effects of meal volume and posture on gastric emptying and intragastric distribution of a solid meal and appetite in normal subjects.

MATERIALS AND METHODS

Subjects

Eight healthy male volunteers, mean age 24 yr (range 18–34 yr) and mean body mass index 23.5 kg/m² (20.5–27.9 kg/m²), were studied. All subjects were nonsmokers on no medication, and none had a history of gastrointestinal disease or surgery. Written, informed consent was obtained from each subject, and the protocol was approved by the Human Ethics Committee of the Royal Adelaide Hospital.

Protocol

Each subject had measurements of gastric emptying and appetite on 4 days, each of which was separated by 2–14 days. Two of the four studies were performed while the subject was lying in the left lateral decubitus ("pylorus up") position, and two were performed while the subject was sitting. In both postures gastric emptying of a "large" and a "small" meal were quantified. The order of the four studies was randomized. The large meal (total weight 650 g) consisted of 450 g cooked ground beef with in vivo labeled 99mTc-chicken liver and 200 g tomato sauce ("Dolmio"; Master Foods, Wyong, NSW, Australia), and the small meal (total weight 217 g) consisted of 150 g ground beef with 99mTc-chicken liver and 67 g sauce. The caloric content of the large meal was 1,302 kcal, and that of the small meal was 434 kcal. Each meal was consumed at 1200 after an overnight fast (12 h liquids and 14 h solids) in front of a scintillation camera (6). Subjects were asked not to chew before swallowing (in an attempt to standardize particle size) and to consume the meal within 5 min. The time for meal consumption was measured. Immediately before, and after, meal consumption appetite was assessed using a visual analog questionnaire (28). Both gastric emptying and appe-
Measurement of Gastric Emptying

In vivo labeled 99mTc-sulfur colloid-chicken liver (20 MBq; ~5 g) was mixed thoroughly with uncooked ground beef (so that the combined weight was 450 or 150 g) and then cooked. The tomato sauce (200 or 67 g) was added after cooking and mixed through the meat.

Scintigraphic data were acquired for 240 min, at 1-min frames for the first 60 min and at 3-min frames thereafter. Data acquisition commenced immediately after meal consumption. Radionuclide data were corrected for radionuclide decay, gamma ray attenuation, and subject movement using established methods (6–8). The total stomach region of interest was divided into proximal and distal regions, with the proximal region corresponding to the fundus and proximal corpus and the distal region corresponding to the distal corpus and antrum (8). Emptying curves were derived for the total, proximal, and distal stomach regions of interest and were expressed as percent of isotope retained vs. time (7, 8). From the emptying curves, a number of parameters were then calculated for further analysis. For the total stomach these were the lag phase [defined as the time period, in minutes, before any of the meal entered the proximal small intestine (6)], the amount of isotope remaining in the stomach at 15-min intervals until 60 min and at 30-min intervals until 240 min, the postlag linear emptying rate (g/min; between the end of the lag phase and 180 min), and the 50% emptying time (T50). The content of both the proximal and distal stomach at 15-min intervals until 240 min and the rate of emptying from the proximal stomach (g/min; between 0 and 180 min) were also calculated (7).

Assessment of appetite. Hunger and fullness were evaluated by having the subjects mark a previously validated visual analog scale at −15, 0, 15, 30, 45, 60, 90, 120, 150, 180, 210, and 240 min (28).

Statistical analysis. A two-factor (meal volume and body posture) repeated measures ANOVA was used to evaluate effects of meal size and posture on single value variables such as the time for meal consumption, the lag phase, the T50, and the postlag emptying rate. A three-factor (meal volume, body posture, and time) repeated-measures ANOVA was performed to evaluate effects on gastric emptying from the total, proximal, and distal stomach, fullness, and hunger. The following time points were used in the three-factor ANOVA: 0, 15, 30, 45, 60, 90, 120, 150, 180, 210, and 240 min. When a significant interaction between factors was observed, contrasts were used to test preplanned hypotheses of interest enabling paired comparisons between the four studies. Relationships between hunger, fullness, and gastric emptying were assessed using linear regression analysis at 0, 15, 30, 45, 60, 90, 120, 150, 180, 210, and 240 min. All data were analyzed using proprietary software SuperANOVA (version 1.11; Abacus Concepts, Berkeley, CA). Data are shown as mean values ± SE. A P value < 0.05 was considered significant in all analyses.

RESULTS

All subjects tolerated the study well, and no adverse effects were reported.

Time Taken for Meal Consumption

In 5 of the 32 studies the time for meal consumption was >5 min (maximum 9 min). The time taken for consumption of the large meal was greater than that for the small meal in both postures, and the magnitude of the effect of meal size was not modified by posture (sitting: large 5.4 ± 0.6 min vs. small 2.3 ± 0.3 min; left lateral: large 5.4 ± 0.7 min vs. small 1.8 ± 0.2 min). Repeated-measures ANOVA demonstrated a significant effect of meal size [F(1, 7) = 46.3, P < 0.0005], a nonsignificant effect of posture [F(1, 7) = 0.76, P = 0.41], and a nonsignificant interaction of meal size and posture [F(1, 7) = 1.99, P = 0.20].

Gastric emptying

Lag phase. In both postures gastric emptying approximated a linear pattern after an initial lag phase (Fig. 1). The lag phase was shorter for the large meal when compared with the small meal (sitting: large 13 ± 5 min vs. small 29 ± 7 min; left lateral: large 16 ± 3 min vs. small 24 ± 3 min), and the magnitude of the effect of meal volume was not modified by posture. Repeated-measures ANOVA demonstrated a significant effect of meal volume [F(1, 7) = 15.1, P < 0.01], a nonsignificant effect of posture [F(1, 7) = 0.05, P = 0.83], and a nonsignificant interaction between meal size and posture [F(1, 7) = 2.42, P = 0.16].

T50. The T50 was longer with the large meal than the small meal and was not influenced by body posture (sitting: large 197 ± 10 min vs. small 121 ± 19 min; left lateral: large 202 ± 12 min vs. small 133 ± 14 min). Repeated-measures ANOVA demonstrated a significant effect of meal volume [F(1, 7) = 40.8, P < 0.001] but not posture [F(1, 7) = 0.79, P = 0.40], and there was no interaction between meal volume and posture [F(1, 7) = 0.32, P = 0.59].

Postlag emptying rate. The postlag emptying rates were also more rapid with the large meal, an effect not influenced by body posture (sitting: large 1.7 ± 0.2 g/min vs. small 1.1 ± 0.1 g/min; left lateral: large 1.8 ± 0.1 g/min vs. small 1.3 ± 0.04 g/min). Repeated-measures ANOVA demonstrated a significant effect of meal volume [F(1, 7) = 44.7, P < 0.0005] but not posture [F(1, 7) = 2.4, P = 0.17], and there was no interaction between meal volume and posture [F(1, 7) = 0.65, P = 0.45].

Total stomach. The amount of the meal (g) in the total stomach was greater with the large meal compared with the small meal and was not influenced by posture (Fig. 1). Repeated-measures ANOVA demonstrated a significant effect of meal volume [F(1, 7) = 1794.5, P < 0.0001], no significant effect of body posture [F(1, 7) = 0.001, P = 0.98], a significant effect of time [F(10, 70) = 218.9, P < 0.0001], no significant interaction between meal volume and posture [F(1, 7) = 0.34, P = 0.57], a significant interaction between meal volume and time [F(10, 70) = 50.9, P < 0.0001], and a nonsignificant interaction between meal volume, posture, and time [F(10, 70) = 2.28, P = 0.11].

There was also a greater percentage of the meal retained in the total stomach with the large meal (Fig. 2). Repeated-measures ANOVA demonstrated a significant effect of meal volume [F(1, 7) = 28.4, P < 0.001], a nonsignificant effect of body posture [F(1, 7) = 1.91, P = 0.20], and a nonsignificant interaction between meal volume and posture [F(1, 7) = 0.35, P = 0.57].

Total meal consumption time was significantly longer with the large meal in both postures, and no significant effect was observed for body posture. Repeated-measures ANOVA demonstrated a significant effect of meal volume [F(1, 7) = 47.1, P < 0.0001], a nonsignificant effect of body posture [F(1, 7) = 1.91, P = 0.20], and a nonsignificant interaction of meal size and posture [F(1, 7) = 0.35, P = 0.57].
0.06, \(P = 0.81 \), a significant effect of time \([F(10,70) = 203.7, P < 0.0001] \), a nonsignificant interaction between meal volume and posture \([F(1,7) = 0.51, P = 0.50] \), a significant interaction between meal volume and time \([F(10,70) = 18.7, P < 0.0001] \), and a nonsignificant interaction between meal volume, posture, and time \([F(10,70) = 1.70, P = 0.20] \).

Proximal stomach. The amount of the meal (g) in the proximal stomach was greater with the large meal compared with the small meal and was not influenced by posture (Fig. 1). Repeated-measures ANOVA demonstrated a significant effect of meal volume \([F(1,7) = 203.7, P < 0.0001] \), a nonsignificant effect of body posture \([F(1,7) = 3.30, P = 0.11] \), a significant effect of time \([F(10,70) = 309, P < 0.0001] \), a nonsignificant interaction between meal volume and posture \([F(1,7) = 2.30, P = 0.17] \), a significant interaction between meal volume and time \([F(10,70) = 85.7, P < 0.0001] \), and a nonsignificant interaction between meal volume, posture, and time \([F(10,70) = 0.79, P = 0.49] \).

There was a greater percentage of the meal retained in the proximal stomach with the large meal (Fig. 2). Repeated-measures ANOVA demonstrated a significant effect of meal volume \([F(1,7) = 14.4, P < 0.01] \), a nonsignificant effect of body posture \([F(1,7) = 2.73, P = 0.14] \), a significant effect of time \([F(10,70) = 272.5, P < 0.0001] \), a nonsignificant interaction between meal volume and posture \([F(1,7) = 0.23, P = 0.65] \), a significant interaction between meal volume and time \([F(10,70) = 18.7, P < 0.0001] \), and a nonsignificant effect of body posture \([F(1,7) = 2.73, P = 0.14] \).
interaction between meal volume, posture, and time [F(10,70) = 1.66, P = 0.22].
Distal stomach. The amount of the meal (g) in the distal stomach was greater with the large meal compared with the small meal and also was greater in the sitting compared with the left lateral position (Fig. 1). Repeated-measures ANOVA demonstrated a significant effect of meal volume [F(1,7) = 231.5, P < 0.0001], a significant effect of body posture [F(1,7) = 7.3, P < 0.05], a significant effect of time [F(10,70) = 13.5, P < 0.005], a significant interaction between meal volume and posture [F(1,7) = 7.14, P < 0.05], a nonsignificant interaction between meal volume and time [F(10,70) = 3.0, P = 0.07], and a nonsignificant interaction between meal volume, posture, and time [F(10,70) = 1.29, P = 0.30]. Given the significant interaction of meal volume and body posture, contrasts were performed to further evaluate the effects. There was a significant effect of meal volume on the amount of the meal in the distal stomach for both postures (“sitting”: F(1,21) = 246.4, P < 0.001; “left lateral”: F(1,21) = 142.1, P < 0.0001). In contrast, the effects of posture were only evident with the large meal [F(1,21) = 18.7, P < 0.005] but not with the small meal [F(1,21) = 0.30, P = 0.60].
There was also a greater percentage of the meal retained in the distal stomach with the large meal and more retained in the sitting position compared with the left lateral position (Fig. 2). Repeated-measures ANOVA
demonstrated a significant effect of meal volume \([F(1,7) = 49.9, P < 0.0005]\), a significant effect of body posture \([F(1,7) = 5.7, P < 0.05]\), a significant effect of time \([F(10,70) = 15.9, P < 0.005]\), a nonsignificant interaction between meal volume and posture \([F(1,7) = 3.09, P = 0.12]\), a significant interaction between meal volume and time \([F(10,70) = 14.5, P < 0.001]\), a nonsignificant interaction between meal volume and posture \([F(1,7) = 0.59, P = 0.47]\), and a nonsignificant interaction between meal volume, posture, and time \([F(10,70) = 0.89, P = 0.46]\).

Appetite

There was no difference between the four studies in scores for hunger or fullness before meal ingestion.

Fullness. In both postures there was an increase in fullness after both meals. The score for fullness was greater with the large than the small meal and was not influenced by body posture (Fig. 3). Repeated-measures ANOVA demonstrated a significant effect of meal volume \([F(1,7) = 7.8, P < 0.05]\), a nonsignificant effect of body posture \([F(1,7) = 3.2, P = 0.12]\), a significant effect of time \([F(10,70) = 14.5, P < 0.001]\), a nonsignificant interaction between meal volume and posture \([F(1,7) = 0.59, P = 0.47]\), and a significant interaction between meal volume and time \([F(10,70) = 5.1, P < 0.05]\), and a nonsignificant interaction between meal volume, posture, and time \([F(10,70) = 0.88, P = 0.49]\).

Hunger. In both postures there was a reduction in hunger after both meals. The magnitude of these changes was greater with the large than the small meal and greater in the sitting position compared with the left lateral position (Fig. 3). Repeated measures ANOVA demonstrated a significant effect of meal volume \([F(1,7) = 5.9, P < 0.05]\), an almost significant effect of body posture \([F(1,7) = 5.3, P = 0.055]\), a significant effect of time \([F(10,70) = 13.4, P < 0.001]\), a nonsignificant interaction between meal volume and posture \([F(1,7) = 1.93, P = 0.21]\), a nonsignificant interaction between meal volume and time \([F(10,70) = 1.7, P = 0.22]\), and a nonsignificant interaction between meal volume, posture, and time \([F(10,70) = 0.88, P = 0.49]\).

Relationship between appetite and gastric emptying. Hunger and fullness were inversely related \((r = -0.73, P < 0.05)\) at all time points after the meal up to 180 min.

There were no significant relationships between scores for either fullness or hunger and the content of the total or proximal stomach. After the large meal the
score for hunger at 210 min was inversely related to the
content of the distal stomach at that time (r = 0.72, P <
0.05) but not at any other time point.

DISCUSSION

This study establishes for the first time that gastric
emptying of a solid meal is influenced by its volume. A
threelfold increase in the volume of a solid meal (from
217 to 650 g) was associated with a reduction in the
duration of the lag phase and acceleration of the
postlag emptying rate. As a consequence of these
changes the rate of energy delivery from the stomach to
the small intestine was much faster with the larger
meal. In contrast to the effects of volume, posture had
only a minor (albeit statistically significant) impact on
intragastric meal distribution and no effect on the rate
of gastric emptying. Although the demonstration that
meal volume was a major determinant of postprandial
satiation is predictable, the observation that after
ingestion of the large meal hunger was inversely re-
lated to the content of the distal stomach is of interest.

The effect of the volume of a solid meal on its rate of
gastric emptying has hitherto not been evaluated in
humans. In dogs, Lin et al. (21) reported that the rate of
emptying of 10-mm pieces of steak was independent of
meal volume in the range of 150–600 g and accordingly
suggested that trituration was the rate-limiting step
for solid emptying. It should, however, be noted that in
this study chyme was diverted from the small intestine
by a duodenal fistula, thereby eliminating small intesti-
nal feedback. It has been clearly established in humans
that increasing the volume of a liquid meal is associ-
ated with more rapid emptying (21), even if the liquid
contains nutrients (17), indicating that with liquids
intragastric volume has the capacity to act as a propul-
sive force sufficient to overcome feedback from small
intestinal chemoreceptors (3, 20, 22). In contrast, stud-
ies assessing the effects of meal volume on gastric
emptying of solids in humans have been conducted only
using mixed solid/liquid meals. Moore et al. (24) as-
essed the relative influence of weight and caloric
content on gastric emptying of a mixed meal using a
scintigraphic technique, but interpretation of their
results is difficult, as the major energy component of
their meal (oil) was not labeled. We have previously
reported (7) that an increase in the volume of the solid
component of a mixed solid and liquid meal is associ-
bled with more rapid emptying of solids, from both the
total and proximal stomach. In this study (7) the lag
phase was longer after the larger meal, confirming that
the presence of a nutrient liquid modifies emptying of
the solid component of a meal (6, 15). The mechanisms
mediating the observed volume-related acceleration of
gastric emptying of solids are uncertain. The amount of
solid in the distal stomach was greater with the larger
meal in both postures, and it has been suggested that
greater antral distension may increase antral contractile
activity, leading to more efficient trituration (13,
24). The shorter lag phase with the larger meal may be
attributable to more efficient antral mixing (29). If this
is the case the relationship between volume and empty-
ing of a solid meal is likely to be critically dependent on
the time required for trituration (12, 21). It should also
be recognized that after the lag phase much of the solid
meal has been ground to small particles and therefore
essentially liquefied. This is likely to contribute to the
observed effect of meal volume on the postlag emptying
rate.

Our study indicates that posture does not affect
gastric emptying of a solid meal. The emphasis of most
previous studies of the effects of posture on gastric
emptying has related to emptying of liquids (nonnutri-
tent, nutrient, and oil; see Refs. 1, 2, 4, 16); gastric
emptying and intragastric distribution of liquids, semi-
solids, and oil are affected by posture, being slower in
the recumbent than the erect position (1, 2, 4, 11, 16).
The effects of posture on gastric emptying of liquids is
likely to relate to changes in antrypyloric motility as well
as passive forces generated by volume and gravity (1).
Moore et al. (23) evaluated the effects of posture on
gastric emptying of a meal consisting of beef stew and
orange juice. Although gastric emptying of the solid
component was observed to be slower in the supine
when compared with the sitting and standing positions,
emptying of the liquid component of the meal was not
quantified, and this could account for the observed
differences in gastric emptying of solid (6, 15). Our
study is therefore the first to evaluate the effects of
posture on gastric emptying of a solid meal in the
absence of liquid. We anticipated that emptying of
solids may be more rapid in the sitting than the left
lateral position, but this proved not to be the case,
probably because the observed effects of posture on
intragastric distribution of solids were relatively small.
We are uncertain why gravity does not have a major
effect on intragastric distribution of solids, as it does for
liquids (1, 14). Moore et al. (25) have suggested that the
so-called “midgastric band” may limit movement of
solid food from the proximal to the distal stomach. It is
also possible that antral tone regulates intragastric
distribution of solids (8).

Signals from the gastrointestinal tract play a major
role in the regulation of appetite (27), but it has not
been established whether gastric distension or feed-
back from small intestinal nutrient receptors is the
more important of these mechanisms (5, 9, 10, 14, 18,
19, 26). The potential effects of posture on appetite and
gastrointestinal symptoms are of some interest; pa-
ients with upper gastrointestinal symptoms are of some
interest; pa-

intestinal nutrient receptors, contributed to the sustained increase in satiation. There was a trend for postprandial hunger to be less in the left lateral than the sitting position after ingestion of the small meal, but the magnitude of this difference was small, and the effect was not quite significant. It is therefore likely that the reduction in hunger in the left lateral position after ingestion of an oil/aqueous meal reported in our previous study relates to the more rapid emptying of oil in this posture (14). An inverse relationship between postprandial hunger and the content of the distal stomach was observed; however, this relationship was only evident at one time point and is likely to represent a statistical artifact.

We thank S. Suter for typing the manuscript and K. Willson for statistical advice. This study was supported by the National Health and Medical Research Council of Australia.

Address for reprint requests: M. Horowitz, Dept. of Medicine, Royal Adelaide Hospital, North Terrace, Adelaide, SA 5005, Australia.

Received 29 May 1997; accepted in final form 15 July 1998.

REFERENCES

