Regulation of NHE3 activity by G protein subunits in renal brush-border membranes

FREDERICK E. ALBRECHT,1,2 JING XU,1 ORSON W. MOE,3 ULRICH HOPFER,4 WILLIAM F. SIMONDS,5 JOHNN ORLOWSKI,6 AND PEDRO A. JOSE1,2

1Departments of Pediatrics, and 2Physiology and Biophysics, Georgetown University Medical Center, Washington, District of Columbia 20007; 3Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75235; 4Department of Physiology, Case Western Reserve School of Medicine, Cleveland, Ohio 44106; 5Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and 6Department of Physiology, McGill University School of Medicine, Montreal, Canada H3G 1Y6

The sodium/hydrogen exchanger (NHE) is the major transporter of sodium across the luminal membrane of the proximal tubule (1). Six NHE isoforms are found in mammals, and all are expressed in renal tissue, with the exception of the NHE5 isoform, which is found in the central nervous system, testes, spleen, and skeletal muscle (1). The NHE3 isoform is the only NHE isoform expressed in rat renal brush-border membranes (BBM). Therefore, it is responsible for the amiloride-sensitive Na+ transport in BBM vesicles (BBMV) (2–4, 6, 7, 22, 41). NHE3 activity is regulated by phosphorylation/dephosphorylation processes and membrane recycling in intact cells. However, the Na+/-H+ exchanger (NHE) can also be regulated by G proteins independent of cytoplasmic second messengers, but the G protein subunits involved in this regulation are not known. Therefore, we studied G protein subunit regulation of NHE3 activity in renal brush-border membrane vesicles (BBMV) in a system devoid of cytoplasmic components and second messengers. Basal NHE3 activity was not regulated by Gαs or Gαi, because antibodies to these G proteins by themselves were without effect. The inhibitory effect of D1-like agonists on NHE3 activity was mediated, in part, by Gαs, because it was partially reversed by anti-Gαi antibodies. Moreover, the amount of Gαs that coimmunoprecipitated with NHE3 was increased by fenoldopam in both brush-border membranes and renal proximal tubule cells. Furthermore, guanosine 5′-O-(3-thiotriphosphate) but not guanosine 5′-O-(2-thiodiphosphate), the inactive analog of GDP, increased the amount of Gαs that coimmunoprecipitated with NHE3. The α2-adrenergic agonist, UK-14304 or pertussis toxin (PTX) alone had no effect on NHE3 activity, but UK-14304 and PTX treatment attenuated the D1-like receptor-mediated NHE3 inhibition. The ability of UK-14304 to attenuate the D1-like agonist effect was not due to Gαi, because the attenuation was not blocked by anti-Gαi antibodies or by PTX. Anti-Gβγ common antibodies, by themselves, slightly inhibited NHE3 activity but had little effect on D1-like receptor-mediated NHE3 inhibition. However, anti-Gβγ common antibodies reversed the effects of UK-14304 and PTX on D1-like agonist-mediated NHE3 inhibition. These studies provide concrete evidence of a direct regulatory role for Gαi, independent of second messengers, in the D1-like-mediated inhibition of NHE3 activity in rat renal BBMV. In addition, βγ dimers of heterotrimeric G proteins appear to have a stimulatory effect on NHE3 activity in BBMV.

sodium/hydrogen exchanger isoforms; proximal tubule; kidney
These heterotrimeric G proteins are composed of Gα, β, and γ subunits, where the α subunits bind and hydrolyze GTP, whereas the β and γ subunits exist as a tightly bound dimer. The Gα subunit and βγ dimer directly regulate effector proteins, including enzymes and ion channels (25, 28). Some effectors, e.g., adenyl cyclase, are regulated by both the G protein α subunits and βγ dimers (37). G protein subunits may also regulate NHE3 activity in renal BBM independent of second messengers (5, 10, 32); however, the G protein subunit mediating this regulation is not known. Therefore, a secondary aim of this study is to determine the role of the G protein subunits αi, αo, and βγ in the second messenger-independent regulation of NHE3 activity in renal BBM by D1-like receptors.

METHODS

Preparation of renal BBM. Male Wistar-Kyoto (WKY) rats (Taconic, Germantown, NY), 9–16 wk old, fed on regular Purina rat chow diet were anesthetized with an intraperitoneal injection of pentobarbital sodium (50 mg/kg body wt), and the kidneys were harvested. We wanted to measure the activity of NHE3, the NHE isoform expressed in BBMV (2, 4, 41). BBMV were isolated from the outer two-thirds of the cortex, which was separated from the medulla to avoid inclusion of medullary rays and the medullary thick ascending limb of Henle. These maneuvers ensured isolation of nephrons that do not express NHE1 (3, 4, 6, 7, 22). The presence of NHE1 in basolateral membranes of deeper nephrons could contaminate the BBM preparation and thus confound interpretation of our results (22). These BBMs were devoid of NHE1 protein, as determined by immunoblotting (data not shown), in agreement with other reports (3, 22).

BBMs were isolated by MnCl2 precipitation and differential centrifugation, as previously reported (10, 12, 31). The BBMs were suspended in (mM) 150 KCl with 25 2-(N-morpholino)ethanesulfonic acid (MES) and adjusted to pH 5.5 with 4 KOH (“inside” buffer). The BBMs spontaneously form vesicles while incubating on ice for 60 min. Subsequently, depending on the experiment, drugs, or their vehicle, and antibodies, or their vehicle for inside control (heat-denatured antibodies to assure the same sodium and protein concentrations among groups), were added to the BBMs.

Measurement of NHE3 activity. NHE3 activity was assayed by measuring the 3-s 100 µM 5-((3M)-3-22Na+ uptake (difference between 22Na+ uptake in the absence of amiloride or its analogs and 22Na+ uptake in presence of amiloride or its analogs) as described (10–12, 21, 30–32, 39). The validity and reliability of this assay have been well established in many laboratories, including our own (5, 10–12, 27, 32, 39). In agreement with Wu et al. (41), NHE activity in BBMV was due to NHE3 isoform. NHE activity in our BBMV preparations was resistant to 5-(N-ethyl-N-isopropyl)-amiloride (EIPA); NHE1 is 100 times more sensitive to the inhibitory effect of EIPA, relative to its effect on the NHE3 isoform (19, 30). Uptake of 22Na+ into BBMV was measured at 24°C by using the Millipore rapid filtration technique with 0.65-µm nitrocellulose filters (10–12). The BBMV (after vesicle formation) were incubated with receptor agonists/drugs for 30 min before 22Na+ uptake. When antibodies were used, they were added to BBM before vesicle formation (i.e., 90 min before 22Na+ uptake). When drugs were used with the antibodies, the BBM were exposed to the antibodies 60 min before vesicle formation, and the receptor agonists/drugs were added after vesicle formation 30 min before 22Na+ uptake, as stated previously. 22Na+ uptake was then determined by mixing 20 µl of the membrane vesicle suspension (150–350 µg protein) and 30 µl of uptake medium and incubating for 3 s at 24°C. The final concentration was (in mM) of 142 KCl, 14.7 KOH, 10 MES, 9 HEPES, and 1 NaCl (containing 0.1 to 0.2 µCi of 22Na), pH 7.5. Three seconds after mixing, transport was halted by adding 2 ml of ice-cold stop buffer (in mM) 150 KCl, 15 HEPES, 0.1 MIA, pH 7.5. The studies were performed in the presence of an outwardly directed pH gradient (pHi = 7.5, pHout = 7.5) and an inwardly directed Na+ gradient ([Na+]out = 1 mM, [Na+]in = 0 mM). Drug or antibodies that required access to the interior of the vesicles were added to the membrane suspensions before vesicle formation, as described above and previously reported (6, 11, 12, 39).

Pertussis toxin treatment of BBM. After the isolation of BBM, the membranes were suspended in an incubation buffer containing (in mM) 100 Tris(hydroxymethyl)-aminomethane hydrochloride, 40 diithothreitol, 20 thymidine, 5 ethylenediaminetetraacetic acid, 1 MgCl2, 1 adenosine-5’-triphosphate, and 1 β-nicotinamide adenine dinucleotide (NAD), pH 7.4. The suspension was centrifuged at 18,000 rpm for 20 min and then resuspended in the above buffer. Pertussis toxin (PTX) was preincubated in incubation buffer for 10 min at 30°C to activate PTX (16); buffers without PTX were treated similarly as controls. Subsequently, the BBMs were incubated in incubation buffer with or without PTX (25 µg PTX/mg protein) at 30°C for 1 h to ADP ribosylate Gα (16). The incubation buffer- and PTX-treated membranes were centrifuged at 18,000 rpm for 20 min. The pellet was washed and resuspended in a volume of inside buffer (equal to 100 times the pellet volume) and centrifuged at 18,000 rpm for 20 min (2×). The resulting pellet was resuspended with inside buffer to an approximate protein concentration of 1 mg/ml. Protein concentrations were determined by the Lowry method. The BBMV were then used for transport studies as described in the preceding section.

ADP ribosylation studies. The BBMs were treated in a manner similar to that described for PTX, except that 32P-labeled NAD was used (16). The BBMs were solubilized in Laemmli Tris-glycine and SDS-PAGE denaturing, reducing buffer (catalog #LC2675, Novex, San Diego, CA) and boiled for 3 min. The suspensions of solubilized BBMV with and without PTX were loaded on a 12% Tris-glycine gel and electrophoresed at 100 V for 120 min.

Immunoprecipitation studies. Three types of experiments were performed. In the first set of experiments, BBM were treated with GTPγS (10−3 M) or an equal volume of incubation buffer containing (in mM) 150 NaCl, 10 MgCl2, and 20 Tris-HCl, pH 7.5 for 30 min at room temperature and then centrifuged for 20 min at 18,000 rpm, 4°C. In the second set of experiments, plasma membra or immortalized renal proximal tubule cells from WKY rats (40) were incubated with vehicle, GTPγS (10−3 M), or guanosine 5’-O-(2-thiodiphosphate) (GDPβS; 10−4 M) for 30 min at 37°C. In the third set of experiments, immortalized renal proximal tubule cells were incubated with vehicle or fenoldopam (5 x 10−6 M) for 10 min at 37°C. The cells were lysed with ice-cold lysis buffer (PBS with 1% Nonidet P-40, 0.1% SDS, 0.5% deoxycholate, 1 mM phenylmethylsulfonyl fluoride, 10 µg/ml aprotinin, and 10 µg/ml leupeptin (1 mM sodium vanadate was added in the immortalized proximal tubule studies) and centrifuged at 15,000 rpm for 20 min. The lysates were then incubated with 4 µl of antibody against the protein of interest or 4 µl of normal rabbit IgG (as a control) for 1 h at 4°C. Thereafter, 20 µl of 25% protein A agarose (Santa Cruz Biotech, Santa Cruz, CA) were added and incubated overnight on a rocking plat-

Downloaded from http://ajpregu.physiology.org/ by 10.220.32.247 on June 26, 2017
form at 4°C. The immunoprecipitates were pelleted, washed with lysis buffer, suspended in sample buffer, and boiled for 10 min. In some studies using anti-NHE3 antibody for immunoprecipitation and anti-G_{\alpha}\textit{S} for immunoblotting, 2-mercaptoethanol (100 mM) was used instead of \(\beta\)-mercaptoethanol. In this experimental setup, the samples were incubated for 120 min at 24°C to cleave IgG into 75-kDa fragments. This allowed better visualization of proteins with molecular sizes of \(\sim 50\) kDa, e.g., \(G_{\alpha}\textit{S}\); similar results were obtained using 150 mM 2-mercaptoethanol incubated for 30 min at 37°C.

Western blotting. The proteins were separated by electrophoresis on 7.5% SDS-PAGE and then electrophoretically transferred onto nitrocellulose membranes. The transblots were probed with the indicated antibodies and detected by hydrogen peroxidase-labeled secondary antibody and chemiluminescence detection reagents. Quantification of the immunoblots was performed; the density of the area of each immunoblot was quantified using Quantiscan (Biosoft, Ferguson, MO).

Statistical analysis. Data are expressed as means \(\pm\) SE. Differences within groups were analyzed by analysis of variance for repeated measures, followed by Scheffé's test; paired \(t\)-test was used when only two groups were compared. Differences among groups were analyzed by one-way analysis of variance, followed by Scheffé's test; if only two groups were compared, unpaired \(t\)-test was used.

Drugs. The chemicals used were MIA, EIPA, SKF-81297, and UK-14304 (Research Biochemicals, Natick, MA); 5,8,11,14-eicosatetraynoic acid (ETYA; Biomol Research Laboratories, Plymouth Meeting, PA); PTX, GTP\(\gamma\)S, and \(G_{\alpha}\textit{\epsilon}\) standard (Calbiochem, La Jolla, CA); 2-mercaptoethanol-HCl (Pierce, Rockford, IL). All other reagents were bought from Sigma (St. Louis, MO). Anti-NHE1 monoclonal antibodies were purchased from Chemicon, Temecula, CA. Anti-NHE3 antibodies were raised against synthetic oligopeptides from the amino acid sequence of rat NHE3 (amino acids 633–646; Research Genetics, Huntsville, AL) (2).

RESULTS

NHE3 activity in BBMV. The NHE isoform responsible for a particular NHE activity can be determined by its sensitivity to amiloride analogs (30). NHE3 is relatively insensitive to EIPA, whereby the EIPA-sensitive isotypes are fully inhibited by \(5 \times 10^{-7}\) M EIPA (30). NHE3 is the only known NHE isoform found in the BBM of renal proximal tubules that is relatively insensitive to EIPA (2–4, 6, 7, 22, 41). Therefore, we determined the effect of varying concentrations of EIPA (10^{-9}–10^{-5} M) on \(^{22}\text{Na}^+\) uptake into BBMV. \(^{22}\text{Na}^+\) uptake into BBMV was not affected by \(\sim 10^{-6}\) M EIPA, indicating that all of the measured NHE activity in BBM was due to NHE3 and not to NHE1 (30) or other EIPA-sensitive NHE isoforms.

\(^{22}\text{Na}^+\) uptake at 1–2 h was assumed to represent equilibrium values and also served as an index of vesicle size (21). In the current and previous reports, no differences among drug/antibody or vehicle-treated membranes at 1–2 h were noted, indicating that vesicle sizes were similar among the groups.

Basal NHE3 activity in BBMV was 1.95 \(\pm\) 0.16 nmol \(^{22}\text{Na}^+\) per mg protein \(\cdot\) min\(^{-1}\). Pretreatment of BBM with dopamine or D_{1}-like agonists inhibited the amiloride-sensitive \(^{22}\text{Na}^+\) transport (3-s uptake) up to 70% in a dose- and time-dependent manner (Fig. 1A, Refs. 10, 12). In contrast, receptor ligands had no effect on EIPA or MIA-insensitive \(^{22}\text{Na}^+\) transport. Previous experiments had established that dopaminergic inhibition of amiloride-sensitive \(^{22}\text{Na}^+\) transport cannot be explained by an increase in the amiloride-sensitive \(^{22}\text{Na}^+\) transport rate, collapse of the proton gradient driving \(^{22}\text{Na}^+\)/H\(^+\) exchange, or a decrease in vesicle size (9, 12). The amiloride-insensitive \(^{22}\text{Na}^+\) transport includes all contributions of \(^{22}\text{Na}^+\) movement through \(^{22}\text{Na}^+\) cotransporters, such as Na\(^{+}\)-glucose transporter (SGLT)-1, SGLT-2, sodium-amino acid cotransporters, and sodium/phosphate cotransporters. The amiloride-insensitive \(^{22}\text{Na}^+\) transport was unchanged by pretreatment with dopamine or D_{1}-like agonist under the experimental conditions of Figs. 1, A and B, 2, 3, 4, A–C (absence of phosphate, glucose, or amino acids in the incubation buffer). Therefore, the decrease in the amiloride-sensitive \(^{22}\text{Na}^+\) transport rate reflects inhibition of NHE3.
This inhibition in BBM is seen in the absence of added ATP and GTP.

\(\text{G}_s^{\alpha} \) mediates D\(_1\)-like agonist inhibition of NHE3 activity in BBMV. Although, NHE3 activity is regulated by phosphorylation/dephosphorylation processes and membrane recycling (14, 23, 42, 43), it can be regulated also by G proteins, independent of cytoplasmic second messengers (5, 10). In agreement with previous studies, dopamine and two different D\(_1\)-like agonists, SKF-81297 and fenoldopam, decreased NHE3 activity in BBMV (Fig. 1A), presumably independent of cAMP (10, 11). Other investigators have shown that dopamine does not stimulate cAMP production in BBMV unless ATP is added (32). Moreover, inhibition of adenylyl cyclase, PKA, and PKC activities did not prevent the inhibitory action of fenoldopam on NHE3 activity in rat BBMV (10). Because dopamine can stimulate phospholipaseA\(_2\) activity in BBM (32), we also studied the effect of ETYA on NHE3 activity at a concentration (10\(^{-4}\) M).

Fig. 2. Effect of pertussis toxin (PTX), D\(_1\)-like receptor agonist SKF-81297 (SKF; 5 \times 10^{-6} \text{ M}), and the \(\alpha_2 \)-adrenergic agonist UK-14304 (UK; 5 \times 10^{-10} \text{ M}) on NHE3 activity in BBMV. *\(P < 0.05 \) vs. respective controls, \#\(P < 0.05 \) vs. SKF, ANOVA, Scheffé’s test.

Fig. 3. Effect of \(\alpha_2 \)-adrenergic agonist UK-14304 (5 \times 10^{-10} \text{ M}) and \(\alpha_2 \)-adrenergic agonist UK-14304 (5 \times 10^{-10} \text{ M}) and anti-\(\alpha_G \) antibody (1:100 dilution) on NHE3 activity in BBMV. *\(P < 0.05 \) vs. control, \#\(P < 0.05 \) vs. D\(_1\)-like agonist, ANOVA, Scheffé’s test.

Fig. 4. A: effect of anti-\(\beta_\text{common} \) antibodies and SKF-81297 on NHE3 activity. *\(P < 0.05 \) vs. others, \#\(P < 0.05 \) vs. D\(_1\)-like agonist or D\(_1\)-like agonist + anti-\(\beta_\text{common} \) antibodies, ANOVA, Scheffé’s test. B: effect of anti-\(\beta_\text{common} \) antibodies on \(\alpha_2 \)-adrenergic agonist UK-14304-mediated reversal of D\(_1\)-like receptor agonist-mediated inhibition of NHE3 activity. *\(P < 0.05 \) vs. D\(_1\)-like receptor agonist + \(\alpha_2 \)-adrenergic agonist, ANOVA, Scheffé’s test. C: effect of anti-\(\beta_\text{common} \) antibodies on D\(_1\)-like receptor agonist-mediated inhibition of NHE3 activity in PTX-treated BBMV. *\(P < 0.05 \) vs. control, \#\(P < 0.05 \) vs. D\(_1\)-like agonist alone, ANOVA, Scheffé’s test.
known to inhibit phospholipase A₂, lipoxigenase, and monoxygenase activities (38). In our study, the inhibitory effect of SKF-81297 was not affected by ETYA (data not shown). These results demonstrate that the inhibitory effect of D₁-like agonists on NHE3 activity in BBMV was not caused by PKA or PKC activation or by eicosanoids.

GTPγS incorporated inside BBMVs inhibited NHE3 activity (5, 10). Thus NHE3 activity can be inhibited by G proteins independent of cytoplasmic second messengers (5, 10). In the current study, we confirm the ability of GTPγS (10⁻³ M) to decrease NHE3 activity (control amiloride-sensitive ²²Na⁺ uptake = 2.99 ± 0.24 vs. 2.06 ± 0.16 nmol Na⁺·mg protein⁻¹·min⁻¹ with GTPγS, P < 0.05, paired t-test). In contrast, GTPγS added to the “outside” of BBMV did not significantly affect NHE3 activity (2.52 ± 0.24 nmol ²²Na⁺·mg protein⁻¹·min⁻¹, P > 0.05, t-test) (9).

The inhibition of NHE3 activity by the D₁-like agonist SKF-81297 was caused in part by Gαs, because antibodies directed against this G protein subunit (1:100 dilution) partially reversed the D₁-like inhibition of NHE3 activity (SKF-81297 + heat-denatured anti-Gαs antibody = 59 ± 5%, n = 12, SKF-81295 + anti-Gαs antibody = 36 ± 4%, n = 8) of NHE3 activity by ~39 ± 5%; anti-Gαs antibody by itself (control) was without effect (Fig. 1B). Heat-denatured anti-Gαs antibody had a minimal effect on NHE3 activity when compared with vehicle treatment alone (data not shown). All groups were compared with a vehicle control, as well as a control consisting of heat-denatured anti-Gαs antibodies in the place of active antibodies, to ensure ion and protein concentrations are the same between groups. The anti-Gαs antibody used in this study has been shown to be specific (33). In the current report, the anti-Gαs antibody recognized a recombinant 45-kDa Gαs standard (not shown) as well as 45- and 52-kDa proteins in immunoblots of BBM (see, for example, Fig. 6A). The ability of anti-Gαs antibody to partially attenuate the inhibitory effect of SKF-81297 on NHE3 activity was caused by anti-Gαs antibody, because heat-denatured anti-Gαs antibody (control studies) had no effect on D₁-like inhibition of NHE3 activity (Fig. 1B). The inability of anti-Gαs antibody to completely block the inhibitory action of SKF-81297 may be related to the fact that only a limited amount of antibody (1:100) can be “loaded” inside the vesicle; 1,000-fold dilution of anti-Gαs antibody had no effect, whereas 1:10 dilution resulted in variable uptake of ²²Na⁺ (data not shown).

Gαs does not mediate the ability of an α₂-adrenergic agonist to reverse the D₁-like inhibition of NHE3 activity in BBMVs. Norepinephrine and angiotensin II oppose D₁-like agonist inhibition of NHE3 activity in the luminal membrane of renal proximal tubule cells, in part, by inhibition of adenyl cyclase activity (8). UK-14304 by itself had no effect (Fig. 2), probably because NHE3 activity must be inhibited first to demonstrate a stimulatory effect (8). However, in BBMVs where cAMP cannot be generated, UK-14304, an α₂-adrenergic agonist, was able to partially reverse (22–55%) the D₁-like agonist inhibition of NHE3 activity (Fig. 3). The Gαs subunit did not appear to be involved in the current experimental setup, because anti-Gαs subunit antibodies (1:100 dilution) did not affect the ability of UK-14304 to counteract the D₁-like agonist inhibition of NHE3 activity (Fig. 3). Gαs subunit is the predominant Gα isoform expressed in renal proximal tubules (35). The anti-Gαs antibody used in this study has been shown to be specific (34). In the current report, the anti-Gαs antibody recognized a 41-kDa protein that corresponded with the protein ADP-ribosylated by PTX in BBM (data not shown). Lower dilutions of anti-Gαs antibody (1:10 dilution), as with the lower dilutions of anti-Gαs antibody, resulted in variable uptakes of ²²Na (data not shown). In addition, anti-Gαs antibodies did not influence basal or D₁-like agonist inhibition of NHE3 activity (Fig. 3). All groups were compared with a vehicle control as well as a vehicle plus heat-denatured anti-Gαs (1:100 dilution) antibody control to ensure that concentrations of ions and proteins are the same between groups.

The inability of anti-Gαs antibodies to affect NHE3 activity may have been due to the presence of other Gα subunit isoforms. Therefore, to prove that Gαs subunits did not mediate the α₂-adrenergic agonist attenuation of D₁-like agonist inhibition of NHE3 activity, we performed additional studies in BBM treated with PTX, a toxin known to inactivate Gαs through ADP ribosylation (16). Incubation of BBM with PTX at a concentration that ADP ribosylated a 41-kDa protein had no effect on basal NHE3 activity compared with the vehicle (control) or α₂-adrenergic agonist [UK-14304 (5 × 10⁻¹⁰ M)]-treated group. The vehicle control groups were studied concurrently and consisted of BBMVs incubated in the same buffers without PTX. PTX treatment did not affect basal NHE3 activity; it also did not alter any UK-14304 effect. Thus, in our studies, Gαs did not influence NHE3 activity. However, after PTX treatment, there was no longer a difference in NHE3 activity between D₁-like receptor agonist treatment alone and D₁-like receptor agonist plus α₂-adrenergic receptor treatment (Fig. 2). This was not caused by a reduction in the stimulatory effect of the α₂-adrenergic agonist on NHE3 activity but, rather, by a diminution (43% ± 5%) in the inhibitory effect of the D₁-like agonist [SKF-81297 (5 × 10⁻⁶ M)].

βγ dimer mediates the ability of α₂-adrenergic agonist to reverse the D₁-like inhibition of NHE3 activity in BBMVs. Because Gαs did not mediate the “stimulatory” effect of α₂-adrenergic receptor activation on NHE3 activity in BBMVs, we determined whether βγ subunits were involved in the α₂-adrenergic agonist antagonism of D₁-like agonist inhibition of NHE3 activity. Antibodies against βcommon, slightly decreased NHE3 activity in the basal state (compared with the vehicle control or heat-denatured anti-βcommon, antibody control) but had an insignificant effect on the inhibition of NHE3 activity by the D₁-like agonist (compared to D₁-like agonist alone, control group; Fig. 4A). All groups were compared with a vehicle control and to another control consisting of heat-denatured anti-βcommon (1:100 dilution) antibodies in place of nondenatured antibodies to
ensure the same ion and protein concentrations between groups (Fig. 4, A-C). However, anti-β/γ-common antibodies (1:100 dilution) attenuated the α2-adrenergic agonist UK-14304 (5 × 10⁻⁸ M) reversal of the inhibitory action of the D₁-like agonist SKF-81297 (5 × 10⁻⁶ M, n = 4 (71 ± 5%), 5 × 10⁻⁸ M, n = 2 (75% ± 5%)) (mod. 4B). The anti-β/γ-common antibody used in these studies has been shown to be specific (13, 34). In the current report, the anti-β/γ-common antibody recognized a 35-kDa protein in immunoblots of BBM (see below). β/γ Subunits were also involved in the diminished inhibitory effect of the D₁-like agonist on NHE3 activity caused by PTX, because anti-β/γ-common antibodies enhanced the inhibitory effect of SKF-81297 after PTX treatment of BBM (Fig. 4C).

To determine the mechanism of the β/γ-dependent effect of PTX treatment of BBM on D₁ receptor-mediated NHE3 inhibition, the Gβ5, Gα5, and β subunits were immunoprecipitated with their respective antibodies from vehicle- and PTX-treated BBM. The immunoprecipitates were electrophoresed and then antibodies from vehicle- and PTX-treated BBM. PTX treatment tended to increase the immunoprecipitates (1:100 dilution) attenuated the effect of PTX treatment of BBM (Fig. 4C). Setting groups (Fig. 4, C, B). The densitometric analysis from 3 other studies are shown in B. In a second set of studies, immunoprecipitation was performed using anti-Gβα antibodies and immunoblotted with anti-NHE3 antibodies. Membranes or cells from immortalized renal proximal tubule cells were incubated for 10 min with vehicle alone (lane 11), GTPγS (10⁻³ M; lane 12), or GTPβS (10⁻³ M; lane 13). The densitometric analysis from 3 studies are shown in B. Linkage between NHE3 and Gβα is specific, because no band of the appropriate size (85 kDa) was seen when immunoprecipitant was IgG (lane 8). Moreover, a band of the appropriate size (85 kDa) was seen when membranes were immunoprecipitated with anti-NHE3 antibody and then immunoblotted with anti-Gβα antibody (lane 9). This band corresponded to NHE3 band seen after immunoblotting of renal tubular cell membranes with anti-NHE3 antibody (lane 10). In a third set of studies, immortalized renal proximal tubule cells were incubated for 10 min with vehicle alone (lane 15) or the D₁-receptor agonist fenoldopam (5 × 10⁻⁶ M; lanes 14 and 16). The whole cell lysates were immunoprecipitated with anti-Gβα antibodies (lanes 15 and 16) or with normal rabbit IgG (lane 14) and immunoblotted with anti-NHE3 antibodies (lanes 14–16). Densitometric analyses are shown in B. Specificity of immunoprecipitation is shown by absence of immunoblotting of NHE3 using normal rabbit IgG as the immunoprecipitant (lane 14). B: densitometric analyses of effect of GTPγS (10⁻³ M) and GTPβS (10⁻³ M) on amount of NHE3 linked to Gβα in renal BBM (n = 5/group). Effect of GTPγS (10⁻³ M) (n = 5), GTPβS (10⁻³ M) (n = 5), and fenoldopam (5 × 10⁻⁶ M) (n = 3) on amount of NHE3 linked to Gβα treatment of renal proximal tubule cells before membrane lysis. *P < 0.05 vs. respective controls, ANOVA for repeated measures, Scheffés test or paired t-test when only 2 groups were compared (e.g., control vs. fenoldopam-treated cells).

bands (45 and 52 kDa) that represent Gβα observed after immunoblotting rat renal BBM with the anti-Gβα antibody. The amount of Gβα that immunoprecipitated with NHE3 was increased by GTPγS treatment (Fig. 6A, compare lanes 6 and 7, the GTPγS-treated BBM, with lanes 2 and 3, the vehicle (control)-treated
BBM). In contrast, the inactive analog of GDP, GDPβS (Fig. 6A, lanes 4 and 5), had no effect [Fig. 6A, compare lanes 2 and 3, the vehicle-treated BBM, (control), lanes 4 and 5, the GDPβS-treated BBM (negative control), and lanes 6 and 7, the GTPγS-treated BBM]. We have reported that GTPγS but not GDPβS enhanced the inhibitory effect of D1-like agonists on NHE3 activity in BBMV (12). The densitometric analyses of three other Gαs studies are shown in Fig. 6B.

In the second set of studies, cell membranes from immortalized renal proximal tubule cells were immunoprecipitated with anti-Gαs antibody and then immunoblotted with anti-NHE3 antibody. The reversal of the immunoprecipitant/immunoblotting antibody (compared with the first set of experiments) was performed to demonstrate the specificity of Gαs/NHE3 coupling. Incubation of cell membranes from immortalized proximal tubule cells of WKY rats with GTPγS increased the amount of NHE3 linked to Gαs (Fig. 6A, lane 12, the GTPγS-treated membranes, vs. lane 11, the vehicle-treated membranes). The inactive analog of GDP, GDPβS, did not affect the amount of NHE3 linked with Gαs (Fig. 6A, lane 13, the GDPβS-treated membranes, vs. lane 12, the GTPγS-treated membranes, or lane 11, the vehicle-treated membranes). The densitometric analyses of three other studies are shown in Fig. 6B. The linkage between NHE3 and Gαs was specific because no band of the appropriate size (85 kDa) was seen in the control using rabbit IgG as the immunoprecipitant (Fig. 6A, lane 8). However, in an additional control for specificity, a band of the appropriate size (85 kDa) was seen when the membranes were immunoprecipitated with anti-NHE3 antibody and then immunoblotted with anti-NHE3 antibody (Fig. 6A, lane 9); this band corresponded to the NHE3 band seen after immunoblotting renal proximal tubular cell membranes with anti-NHE3 antibody (Fig. 6A, lane 10). Differences in sizes between lanes 9, 12, and 16 (immunoprecipitation) from lane 10 (immunoblot) were small and may be due to the persistent partial association of immunocomplex fragments with the immunoprecipitated NHE3 protein.

In the third set of studies, immortalized renal proximal tubule cells were incubated with the D1-like agonist fenoldopam for 10 min before cell lysis. These studies were performed to determine if Gαs binds to NHE3 in the intact cell where cytoplasmic second messengers can be generated. The cell lysates were immunoprecipitated with anti-Gαs antibody and then immunoblotted with anti-NHE3 antibody. Treatment of immortalized proximal tubule cells from WKY rats with the D1-like agonist fenoldopam (5 × 10⁻⁶ M for 10 min) increased the amount of NHE3 linked to Gαs (Fig. 6A, lane 16, the fenoldopam-treated cells, vs. lane 15, the vehicle control-treated cells); the results were specific because no band of the appropriate size was seen when the lysates were immunoprecipitated with a rabbit IgG control instead of anti-Gαs antibody (Fig. 6A, lane 14). The densitometric analyses of these studies are shown in Fig. 6B.

DISCUSSION

NHE3 activity is regulated by phosphorylation/dephosphorylation processes and membrane recycling in intact cells (14, 23, 42, 43). NHE3 activity can also be regulated by G proteins independent of cytoplasmic second messengers, but the G protein subunits involved in this regulation have not been reported (5, 10, 17). We now demonstrate a physical linkage between NHE3 and Gαs and that this coupling increases after activation of regulatory pathways known to inhibit NHE3 activity in both rat renal BBMV and in the intact renal proximal tubular cell. In addition, we show that NHE3 activity can be regulated also by Gβγ dimers.

Activation of G protein-coupled receptors, e.g., D1-like receptors, by its agonist results in the mobilization of G protein subunits that may then interact with effectors, including enzymes (adenylyl cyclase, phospholipases) (37), ion channels (25), or transporter proteins (5, 10, 32). In keeping with the linkage of D1-like receptors and adenylyl cyclase activation, the immunoprecipitation studies demonstrated that the Gαs subunit couples with NHE3 in a regulatory manner in intact cells (12). PKA has been shown to inhibit NHE3 activity whether naturally or heterologously expressed in kidney and other cell lines (12, 18, 39). PKC has also been reported to decrease NHE3 activity (18). However, the inhibitory action of dopamine on renal proximal tubular luminal NHE3 activity is mediated by PKA but not by phospholipase C signal transduction products (11, 12, 32). Eicosanoids generated from cytochrome P-450 metabolism may also participate in the regulation of NHE activity in BBMV (27, 32). In the current study, the inhibitory effect of the D1-like receptor on NHE3 activity in rat renal BBMV was not affected by ETYA (data not shown), an inhibitor of arachidonic acid metabolism. Dopamine can also inhibit NHE1 activity (26). However, expression and activity of NHE1, which is found in basolateral membranes, was not detected in our BBM preparation. There are no other NHE isoforms in BBMs of renal proximal tubules; indeed the NHE isoform responsible for sodium transport in the BBM of renal proximal tubules has been reported to be NHE3 (1, 2, 4, 41).

Dopamine, via D1-like receptors, has also been shown to inhibit NHE activity in rat renal proximal tubules independently of PKA (10, 32) and PKC (10); this second messenger-independent regulation of NHE activity is G protein linked (10, 32). The current studies confirm and extend these observations. With the use of renal BBMVs that are devoid of cytoplasmic second messengers and adenosine triphosphate (10), we find that dopamine and two different D1-like agonists inhibit NHE3 activity in a concentration-dependent manner. In the current report, we determined which G protein subunit is linked to the inhibitory effect of D1-like receptors on NHE3 activity in BBMV independent of cytoplasmic second messengers. Immunoprecipitation studies using proximal tubule cell membranes and rat renal BBM demonstrated that stimulation of D1-like receptors or direct activation of the hetero-
G protein regulation of NHE3

Heterotrimeric G proteins with GDP-βS resulted in a robust increase in the number of Gαd associated with the NHE3. In addition, antibodies to Gαd reduced the D1-like receptor agonist-mediated NHE3 inhibition. The mechanism by which PTX treatment decreased the inhibitory effect of the D1-like agonist on NHE3 activity is probably an indirect one. The stabilization of Gβγ heterotrimer by PTX (16) may have limited the amount of Gβγ dimers available to form heterotrimeric with Gαd and thereby decreased its coupling to D1-like receptors. At any rate, these results provide concrete evidence of a direct regulatory role for Gαd, independent of second messengers, in the D1-like-mediated inhibition of NHE3 activity in rat renal BBMV.

The Gβγ subunits had no discernible role in the regulation of basal or D1-like agonist-mediated inhibition of NHE3 activity in BBMV. The D1-adrenergic agonist, by itself, did not affect NHE3 activity, an action that was not modified by PTX. However, we confirmed that activation of Gβγ heterotrimer by PTX (16) may have limited the amount of Gβγ dimers available to form heterotrimeric with Gαd and thereby decreased its coupling to D1-like receptors. At any rate, these results provide concrete evidence of a direct regulatory role for Gαd, independent of second messengers, in the D1-like-mediated inhibition of NHE3 activity in rat renal BBMV.

The Gβγ subunit had no discernible role in the regulation of basal or D1-like agonist-mediated inhibition of NHE3 activity in BBMV. The D1-adrenergic agonist, by itself, did not affect NHE3 activity, an action that was not modified by PTX. However, we confirmed that activation of Gβγ heterotrimer by PTX (16) may have limited the amount of Gβγ dimers available to form heterotrimeric with Gαd and thereby decreased its coupling to D1-like receptors. At any rate, these results provide concrete evidence of a direct regulatory role for Gαd, independent of second messengers, in the D1-like-mediated inhibition of NHE3 activity in rat renal BBMV.

The mechanism by which PTX treatment is able to counteract the inhibitory effect of D1-like agonists on NHE3 function is more obscure. Certainly, this must be an indirect effect, because PTX is unable to modify Gαd directly. A clue to a possible mechanism emerged from the immunoprecipitation data of Fig. 5, where PTX treatment reduced the amount of Gαd-associated Gβγ. It is likely that Gαd and Gβγ couple to the same pool of Gβγ isoforms. Therefore, after PTX-induced stabilization of Gαd-Gβγ heterotrimer, the amount of Gβγ available for Gαd-Gβγ heterotrimer formation would diminish. Such a scenario would result in a decreased coupling between Gαd-Gβγ heterotrimer with the D1-like receptor. These uncoupled D1-like receptors could no longer respond to agonist stimulation resulting in a decreased D1-like agonist inhibition of NHE3 activity after PTX treatment. Anti-βγ antibodies could have enhanced the D1-like receptor inhibition of NHE3 activity after PTX treatment by removing the stimulatory effect of Gβγ dimers associated with NHE3 and thereby allowing an unopposed inhibitory action of Gαd. Whether regulation of Gαd-associated Gβγ is a physiological mechanism in the D1-like receptor interaction with NHE3 or is simply a pathological consequence of PTX treatment remains uncertain.

In summary, D1-like agonists via Gαd, independent of cytoplasmic second messengers, inhibit NHE3 activity in what appears to be a direct regulatory coupling of the two proteins. Gβγ dimers released on activation of Gβγ receptors can act to oppose the Gαd inhibitory effect most likely at the level of NHE3. Our findings do not rule out that PTX-insensitive Gα subunits implicated here in α2-adrenergic signaling may also contribute to stimulation of NHE3. Further re-
search will also be required to determine if separate functional pools of Gβγ, observed in intact cells (20), exert regulatory effects both at the level of Gα and the effector NHE3. Proteins that regulate NHE3 activity, such as NHE regulatory factor and NHE3 kinase A regulatory protein, are unlikely to be involved in our experiments using BBMV, because the regulation of NHE3 by these proteins involves cAMP (14).

Perspectives

Dopamine, via D1-like receptors, inhibits NHE3 activity via PKA-dependent and PKA-independent pathways. Gαs can directly inhibit whereas Gβγ can indirectly and/or directly stimulate NHE3 activity. PTX-insensitive Gα subunits (Gα12 and Gα13, or Gαq), instead of Gβγ, could also mediate the stimulation of NHE3 activity in BBMV (11, 26). Gα12 has been shown to stimulate NHE3 activity in cell lines heterologously expressing this isoform (26). It is also possible that the G protein-dependent, PKA-independent pathway is an initial step that precedes second messengers in the transduction of the receptor signal.

The authors thank Dr. Sergio Grinstein for supplying some of the polyclonal rat anti-NHE3 antibodies and Dr. Daniel Biemesderfer for supplying a monocolonal rat anti-NHE3 antibody.

These studies were supported by grants from the National Institutes of Health, HL-23081, DK-39308, and DK-52612 (to P. A. Jose). Polyclonal rat anti-NHE3 antibodies and Dr. Daniel Biemesderfer for clonial rat anti-NHE3 antibody.

REFERENCES

