Senescent terminal weight loss in the male F344 rat

BILL J. BLACK, JR., C. ALEX McMahan, EDWARD J. MASORO, YUJI IKENO, and MICHAEL S. KATZ. Senescent terminal weight loss in the male F344 rat. Am J Physiol Regul Integr Comp Physiol 284: R336–R342, 2003. First published October 17, 2002; 10.1152/ajpregu.00640.2001.—Loss of weight culminating in death commonly occurs in humans at advanced ages. Rats that live to old ages, such as the Fischer 344 (F344) strain, also exhibit a terminal loss in body weight. A presently held hypothesis is that the terminal weight loss in the F344 rat model is due to reduced food intake because of an alteration in hypothalamic function resulting in early satiation. We report findings on terminal weight loss and food intake in male F344 rats fed ad libitum (AL group) or a life-prolonging dietary regimen in which caloric intake was restricted (DR group). Rats in both dietary groups that did not exhibit a terminal weight loss died at younger ages than those exhibiting the loss. Terminal weight loss in the AL group was not associated with decreased food intake; indeed, half of the rats in this group had an increased food intake during the period of terminal weight loss. This finding is not in accord with the presently held hypothesis. In the DR group, terminal weight loss was associated with reduced food intake. Pathology (renal disease and neoplasms) did not explain the presence or absence of the association between reduced food intake and weight loss in either dietary group. The duration of the period of terminal weight loss was similar for the AL and DR groups. Apparent caloric restriction; food intake; hypothalamic function

Materials and Methods

Rat maintenance and dietary procedures. Specific pathogen-free (SPF), weanling (26–30 days of age), male F344 rats were purchased from Charles River Laboratories (Kingston, NY). The care and use of the rats were in accord with the guidelines of the University of Texas Health Science Center at San Antonio. The SPF status of the rats was maintained by immediate transfer of the animals to a barrier facility, where they were singly housed in plastic cages with wire

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

http://www.ajpregu.org
mesh floors. A 12:12-h light-dark cycle was maintained in the barrier facility. The basic operation of the barrier facility has been described previously (32). The rats were monitored for SPF status on receipt and at 6-mo intervals thereafter, as described elsewhere (18); SPF status was maintained throughout the study.

All rats were fed a semisynthetic diet (diet A) ad libitum until 6 wk of age. At 6 wk of age, rats were randomly assigned to continue diet A ad libitum (AL group) or to receive a daily allotment of diet B (DR group), which provided 60% of the mean caloric intake of the AL group. The compositions of diets A and B (Table 1) were almost identical, except the amount of the vitamin mix was increased in diet B so that both groups of rats received a similar daily dietary intake of vitamins (18). The DR rats were given their daily food allotment ~1 h before the beginning of the dark phase of the light-dark cycle. The AL and DR rats were undisturbed, other than the activity required for the cleaning of cages, removal and replacement of food cups and water bottles, and measurement of body weight at 2-wk intervals.

One group of 60 AL rats was studied during 1983–1987 (18), and a second group of 40 AL rats was studied during 1987–1991 (24). These two groups were fed diet A and studied using the same experimental protocol. The 60 DR rats were studied concurrently with the 60 AL rats during 1983–1987.

Food intake in the AL group was measured during alternating 3- or 4-day intervals. The weight of the food at the start of the interval and the weight of the food remaining at the end of the interval were recorded. Occasionally, there was food spillage, which was detected as described elsewhere (32). The weight of food eaten was obtained by subtraction, and the average food intake during each day of the interval was calculated by dividing by 3 or 4 days. The weight of food eaten was converted to calories by multiplying by 4.1 kcal/g. The average food eaten during a time period was computed as the weighted mean daily consumption during all food measurement periods within the specified time period, with the number of days during the food measurement periods (i.e., 3 or 4) used as the weight. For total food consumption, the average food consumed per day was multiplied by the number of days.

Food intake in the DR group was measured daily. The weight of the food given and the weight of any remaining food were recorded. On most days, all food was consumed. The weight of the food eaten was obtained by subtraction if any food remained. The weight of the food eaten was converted to calories by multiplying by 4.04 kcal/g. The daily food consumed was summed for all days during a time interval to obtain the total consumption.

Table 1. Composition of diets

<table>
<thead>
<tr>
<th>Component</th>
<th>Diet A</th>
<th>Diet B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casein (vitamin free)</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>DL-Methionine</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Dextrin</td>
<td>43.65</td>
<td>42.19</td>
</tr>
<tr>
<td>Sucrose</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Corn oil</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Vitamin mix</td>
<td>2</td>
<td>3.33</td>
</tr>
<tr>
<td>Choline chloride</td>
<td>0.2</td>
<td>0.33</td>
</tr>
<tr>
<td>Mineral mix</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Fiber</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Values (g/100 g diet) are from Ref. 18. Fiber (Solka Floc) was obtained from James River (Berlin, NH).
RESULTS

A similar fraction of rats in the two AL groups experienced a terminal weight decline (49 of 60 rats = 81.7\% in 1983–1987 and 33 of 40 rats = 82.5\% in 1987–1991, \(P = 0.9154 \)). Among those rats experiencing a terminal weight decline, life span (766.4 ± 12.0 and 789 ± 14.2 days in 1983–1987 and 1987–1991, respectively, \(P = 0.2233 \)), duration of decline (147.3 ± 10.2 and 133.2 ± 11.7 days in 1983–1987 and 1987–1991, respectively, \(P = 0.3722 \)), weight loss (152.2 ± 11.2 and 148.7 ± 13.1 g in 1983–1987 and 1987–1991, respectively, \(P = 0.8396 \)), weight loss relative to weight at start of decline (29.1 ± 2.0 and 27.1 ± 2.4\% in 1983–1987 and 1987–1991, respectively, \(P = 0.5162 \)), and baseline food intake (55.8 ± 0.6 and 55.7 ± 0.8 kcal/day in 1983–1987 and 1987–1991, respectively, \(P = 0.9189 \)) were similar in the two groups, whereas age at the start of the decline (619.1 ± 11.9 and 656.1 ± 13.5 days in 1983–1987 and 1987–1991, respectively, \(P = 0.0458 \)) and weight at the start of the decline (519.8 ± 6.3 and 548.8 ± 5.7 g in 1983–1987 and 1987–1991, respectively, \(P = 0.0011 \)) were different.

The two groups of rats were similar for the majority of the variables, and, although statistically different for two variables, the differences were small. In the remainder of this report, we present results based on these two AL groups combined.

Timing, duration, and magnitude of the terminal weight decline in AL and DR rats are reported in Table 2. Terminal weight loss started at an older age in the DR group than in the AL group (\(P = 0.0001 \)). The duration of the weight loss was similar for both groups of rats (\(P = 0.6954 \)). Moreover, the duration varied considerably among animals of both dietary groups (48–325 and 42–289 days in AL and DR rats, respectively). The body weight before the beginning of the period of terminal weight loss was greater for the AL group than for the DR group (\(P = 0.0001 \)). The AL rats exhibited a greater absolute weight loss (\(P = 0.0001 \)) and weight loss relative to weight at the start of the decline (\(P = 0.0001 \)) than did the DR rats. These findings are similar to those obtained when only the AL and DR rats studied concurrently during 1983–1987 were considered (results not shown).

In Fig. 2, the terminal weight loss is plotted against total food intake relative to baseline. Of the 82 rats in the AL group, 41 had an increase in food intake above that of baseline and 41 had a decrease. In this group, there was no association of food intake with terminal loss of body weight (\(r = 0.08 \), \(P = 0.4566 \)). Of the 38 DR rats, 8 had the same food intake during terminal body weight loss as baseline (unlike the AL group, it was not possible for a rat in the DR group to have an intake of

Table 2. Characteristics of rats exhibiting a terminal weight loss, by diet group

<table>
<thead>
<tr>
<th>Variable</th>
<th>AL Rats (n = 82)</th>
<th>DR Rats (n = 38)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at start of decline, days</td>
<td>634.0 ± 9.1</td>
<td>836.3 ± 22.4</td>
<td>0.0001</td>
</tr>
<tr>
<td>Duration of decline, days</td>
<td>141.6 ± 7.7</td>
<td>136.1 ± 12.2</td>
<td>0.6954</td>
</tr>
<tr>
<td>Weight at start of decline, g</td>
<td>531.5 ± 4.7</td>
<td>324.3 ± 3.9</td>
<td>0.0001</td>
</tr>
<tr>
<td>Weight loss, g</td>
<td>150.8 ± 8.4</td>
<td>57.1 ± 7.0</td>
<td>0.0001</td>
</tr>
<tr>
<td>Weight loss relative to weight at start of decline, %</td>
<td>28.3 ± 1.5</td>
<td>17.6 ± 2.2</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Values are means ± SE. AL, ad libitum fed; DR, dietary restricted.

![Fig. 1. Survival curves of ad libitum-fed (AL) and dietary-restricted (DR) rats.](http://ajpregu.physiology.org/)

![Fig. 2. Terminal weight loss is plotted against total food intake relative to baseline.](http://ajpregu.physiology.org/)
food greater than baseline) and 30 had a decreased intake. In the DR group, there was an association between food intake and terminal loss of body weight: the less food the rat consumed, the greater the weight loss ($r = -0.88$, $P = 0.0001$).

The data were analyzed separately for the period of 42 days before death and the period >42 days before death to learn whether the relationship between food intake and loss of body weight late in the terminal weight loss period was different from that early in the period. In the AL group, weight loss was associated with reduced food intake for the period of 42 days before death ($r = -0.36$, $P = 0.0008$), whereas for the period >42 days, the more food consumed, the greater the weight loss ($r = 0.37$, $P = 0.0017$). Even for the period of 42 days before death, food intake was above baseline in 29 of 82 animals. For the DR group, the less food consumed, the greater the weight loss ($r = -0.85$, $P = 0.0001$ for the period of 42 days before death and $r = -0.46$, $P = 0.0096$ for the period >42 days before death).

Results on terminal weight loss, food intake relative to baseline, and their association in relation to major pathology at the time of spontaneous death are presented in Table 3. The most prevalent pathologies were chronic nephropathy and neoplasia (leukemia plus a variety of solid tissue tumors). For the AL group, examination of the correlation coefficients did not reveal a significant association between food consumed and weight loss within any of the categories of pathology. In contrast, for the DR rats, the correlation coefficients indicated a significant association between food consumed and terminal weight loss within all categories of pathology. (Note that none of the DR rats exhibited grade 4 or E nephropathy.) Significant differences among categories of pathology were found in mean food intake relative to baseline and mean weight loss for both the AL and DR rats. In the AL rats, there was little difference in weight loss between animals with and without neoplasms (144.0 ± 15.4 and 153.8 ± 10.2 g with and without neoplasm, respectively, $P = 0.5976$), even though animals with neoplasms consumed less food relative to baseline (-351.8 ± 159.4 and 185.0 ± 105.5 kcal with and without neoplasm, respectively, $P = 0.0062$). As shown in Table 3, in the DR rats there were significant differences in food con-

![Graph showing terminal weight loss of AL and DR rats plotted against total food intake relative to baseline from the start of the decline until death. Points to the right of zero on the horizontal axis refer to rats that ate more than the basal intake during terminal weight loss; points to the left of zero refer to rats that ate less than the baseline intake during terminal weight loss.]

Table 3. Mean weight loss and food consumed relative to baseline and correlation coefficients between weight loss and food consumed relative to baseline, by pathology and diet group

<table>
<thead>
<tr>
<th>Pathology</th>
<th>AL Rats</th>
<th></th>
<th>DR Rats</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Food consumed, kcal</td>
<td>Weight loss, g</td>
<td>Correlation coefficient</td>
</tr>
<tr>
<td>Renal 1–3 Nonneoplasm</td>
<td>2</td>
<td>123.5 ± 1862.9</td>
<td>224.0 ± 15.0</td>
<td>---</td>
</tr>
<tr>
<td>Renal 1–3 Neoplasm</td>
<td>15</td>
<td>-554.3 ± 133.2</td>
<td>115.5 ± 16.6</td>
<td>-0.35</td>
</tr>
<tr>
<td>Renal 4–E Nonneoplasm</td>
<td>55</td>
<td>145.5 ± 88.8</td>
<td>151.3 ± 10.3</td>
<td>-0.05</td>
</tr>
<tr>
<td>Renal 4–E Neoplasm</td>
<td>10</td>
<td>-48.1 ± 375.8</td>
<td>186.9 ± 26.1</td>
<td>0.35</td>
</tr>
<tr>
<td>Nonneoplasm</td>
<td>57</td>
<td>189.0 ± 101.4</td>
<td>153.8 ± 10.1</td>
<td>-0.01</td>
</tr>
<tr>
<td>Neoplasm (Leukemia)</td>
<td>16</td>
<td>-451.5 ± 240.7</td>
<td>132.1 ± 18.5</td>
<td>0.42</td>
</tr>
<tr>
<td>Neoplasm (Other)</td>
<td>9</td>
<td>-174.7 ± 224.4</td>
<td>165.3 ± 29.0</td>
<td>-0.30</td>
</tr>
</tbody>
</table>

Values are means ± SE. *Correlation coefficient significantly ($P < 0.05$) different from zero.

AJP-Regul Integr Comp Physiol • VOL 284 • FEBRUARY 2003 • www.ajpregu.org
sumed and weight loss between animals with and without neoplasm.

DISCUSSION

Terminal weight loss in both the AL and DR dietary groups tended to occur in rats that died at older ages; this finding is in agreement with the view of McDonald and associates (21) that terminal weight loss is a marker of senescence. Terminal weight loss appears to be an integral component of advanced senescence. McDonald and associates (20) found that terminal loss of body weight in ad libitum-fed F344 rats is associated with a reduction in food intake. This group of investigators subsequently reported that the reduction in food intake results from a change in feeding pattern, specifically, smaller meals of shorter duration, but no reduction in the number of daily meals (5). They concluded that these findings indicated earlier satiation. They also reported that a loss of thermoregulation is associated with terminal weight loss (20). Blanton et al. (3, 4) proposed an involvement of the hypothalamus in the marked senescence that occurs before the end of life, with alterations in food intake, body weight, and thermoregulation serving as both markers and components of senescence. As an approach to uncovering the mechanism underlying the reduction in food intake, they administered neuropeptide Y intracerebroventricularly to rats undergoing terminal weight loss and to age-matched healthy rats not losing weight. The group without weight loss increased food intake, much as young rats do, whereas rats undergoing senescent weight loss exhibited a markedly blunted response. Neuropeptide Y is only one of many peptides that regulate food intake (e.g., amylin, cholecystokinin, leptin, opioids, orexins, and proopiomelanocortin) (10, 22, 25), which makes the exploration of one in isolation barely a beginning.

In many of our AL rats, food intake increased during some or most of the period of terminal weight loss. Even in the period of 42 days before death, when weight loss was significantly related to reduced food intake ($r = -0.36$), the relationship was weak, accounting for only 13% ($r^2 = 0.13$) of the variance in weight loss, and many rats (29 of 82 = 35.4%) increased their food intake above baseline. Clearly, early satiation due to changes in hypothalamic function cannot be the reason for terminal weight loss in many of these rats; the basis for their weight loss must be sought elsewhere. The wasting of dietary fuel due to altered gastrointestinal function and an increase in metabolic rate are the obvious candidates.

Although there are changes in gastrointestinal tract function with increasing age (8, 14), the extent of functional change does not appear to be sufficient to result in an energy deficit in any species studied, except the cat (13, 14). However, in the rat, as in most species, carefully conducted studies of macronutrient processing by the gastrointestinal tract in which animals undergoing terminal weight loss are compared with those of the same age not losing weight have not been performed. Until such studies are done, whether altered gastrointestinal function is involved in terminal weight loss in the rat will remain unanswered.

McDonald et al. (20) reported no change in metabolic rate during terminal weight loss; however, only eight rats were studied, and no information was provided on the food intake of the rats. It may be that those rats with a reduced food intake during terminal weight loss have no change in metabolic rate, whereas those with an increase in food intake exhibit an increased metabolic rate. McCarter and Palmer (19) found an increase in metabolic rate late in the life span of AL male F344 rats, but they did not provide information on food intake and body weight. An increase in metabolic rate during terminal weight loss could be due to the deterioration of neural regulation of energy balance. For example, there is evidence that leptin decreases food intake and increases metabolic rate (9); if, during the terminal period of life of some rats, the effect of leptin on food intake was blunted and its effect on metabolic rate enhanced, then a loss of body weight accompanied by an increase in food intake would be a possible outcome. Of course, this theoretical example is far too simple given the complex processes involved in the regulation of body weight (10). Moreover, a terminal increase in metabolic rate may have little to do with alterations in the neural regulation of energy balance. It is well known that mitochondrial deterioration occurs in all tissues during senescence (1); many believe that this deterioration of mitochondrial function is a cause of senescence. In this circumstance, a terminal increase in metabolic rate might be due to a generalized uncoupling of mitochondrial oxidative phosphorylation. However, before studies of any such mechanisms can be contemplated, metabolic rate must be measured during terminal weight loss, and the findings must show a subset of rats exhibiting an increased metabolic rate.

In our DR group, there was a significant association between weight loss and decreased food intake. However, 8 of the 38 rats in this group underwent terminal weight loss without a reduction in food intake. Moreover, the design of our DR study was such that the rats were prevented from increasing their food intake during any part of the period of terminal weight loss. Thus it is possible that the design of our study was responsible, at least in part, for the association between weight loss and decreased food intake.

The terminal weight loss in our rats did not relate to specific pathologies, which is in agreement with the findings of McDonald et al. (21). For the DR rats, the pattern of differences in food intake and weight loss (Table 3) between pathology classifications (renal 1–3, nonneoplasm vs. renal 1–3, neoplasm) was consistent with weight loss being associated with reduced food intake. That is, the larger the caloric deficit the greater the weight loss. However, as indicated by the correlation coefficients, the association between reduced food intake and loss in body weight is similar in those DR rats with and without neoplasms. In the AL rats, animals with and without neoplasms lost similar
amounts of weight, despite the fact that animals with neoplasms consumed significantly less food. In addition, for AL rats with neoplasms, the group with grades 1–3 renal lesions consumed less food yet lost less weight than the animals with grades 4 and E renal lesions. Thus, for the AL rats the differences in food intake and weight loss among pathology categories suggested no relationship between these two variables, a conclusion consistent with that obtained from the correlation coefficients. The findings in AL and DR rats indicate that a particular pathology, such as neoplasm, does not appear to be either necessary or sufficient for the existence of a relationship between reduced food intake and terminal loss in body weight. It may be that the relationship hypothesized by Blanton et al. (4) between reduced food intake and weight loss describes the association in a subgroup of animals. Our data do not dispute this; however, we are not able to identify such a subgroup on the basis of pathology.

It is striking that the length of the period of terminal decline in body weight is similar in the AL and DR groups. McDonald and associates (21) equate the period of terminal weight loss in rats with marked functional decline. Moreover, these authors refer to the terminal weight loss of rats as senescence. If this view is valid, then DR, an intervention that markedly slows the aging processes (17), delays the occurrence but does not decrease the length of time the rats experience senescent functional deterioration. Interestingly, the amount of weight loss, expressed in absolute or relative terms, is greater in the AL group; this may indicate that DR reduces the severity of functional decline. Such a conclusion may not be correct, however, in view of the data from a previous study on body composition of AL and DR rats. Our earlier work (2) showed that, during the period of life prior to the beginning of terminal weight loss, the body fat content of the AL rats averaged 17% of body weight, a value that was much greater than the 11% body fat content found in the DR rats. In addition, body fat was markedly decreased during terminal weight loss before a reduction in lean body mass was observed (2, 33). Thus it is possible that the loss of functionally important lean body mass during the terminal weight decline differs less between the two dietary groups than suggested by an examination of total mass lost.

The relevance, if any, of terminal weight loss in rats to senescent deterioration in other species including humans remains to be determined. McDonald and associates (21) suggested that the physiological decline occurring in senescent F344 rats is similar to the geriatric failure to thrive syndrome in humans. In humans, a decline in appetite and food intake with age, termed the anorexia of aging, is thought to predispose elderly individuals to the unintentional weight loss and malnutrition that are hallmarks of the failure to thrive syndrome (7, 11). The present study demonstrates for the first time that terminal weight loss in F344 rats fed ad libitum often occurs without reduced food intake. It is of interest in this regard that hormones, cytokines, and other factors thought to modulate weight changes in humans during senescence and in association with age-related diseases have been shown to suppress body weight and induce protein loss by metabolic processes unrelated to reductions in food intake (6, 9, 15, 30, 31). Any attempt to relate terminal weight loss in rats to the failure to thrive syndrome in senescent humans is further complicated by the fact that the clinical syndrome is imprecisely defined as the aggregate of weight loss and other interrelated impairments often attributable to specific comorbid conditions (23). Ultimately, however, identification of the dietary, metabolic, and pathological determinants of terminal weight loss in rats will likely provide insights into mechanisms of physiological decline occurring at the end of life in multiple mammalian species, including humans.

This study was supported in part by National Institute on Aging Grants AG-01188 and AG-13319.

Present address of B. J. Black, Jr.: Dept. of Obstetrics and Gynecology, University of Tennessee Medical Center at Knoxville, Knoxville, TN 37920.

REFERENCES

