Differential control over postganglionic neurons in rat cardiac ganglia by NA and DmnX neurons: anatomical evidence

Zixi (Jack) Cheng,^1,2 Hong Zhang,^1 Shang Z. Guo,^1 Robert Wurster,^3 and David Gozal^4

^1 Departments of Pediatric, Kosair Children’s Hospital Research Institute and Departments of Physiology and Biophysics and ^2Departments of Pediatric, Kosair Children’s Hospital Research Institute and Departments of ??Physiology and Biophysics and ^3Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, Kentucky 40202; and ^4Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky 40202

Submitted 21 March 2003; accepted in final form 17 November 2003

Cheng, Zixi (Jack), Hong Zhang, Shang Z. Guo, Robert Wurster, and David Gozal. Differential control over postganglionic neurons in rat cardiac ganglia by NA and DmnX neurons: anatomical evidence. Am J Physiol Regul Integr Comp Physiol 286: R625–R633, 2004. First published November 26, 2003; 10.1152/ajpregu.00143.2003.—In previous single-labeling experiments, we showed that neurons in the nucleus ambiguus (NA) and the dorsal motor nucleus of the vagus (DmnX) project to intrinsic cardiac ganglia. Neurons in these two motor nuclei differ significantly in the size of their projection fields, axon caliber, and endings in cardiac ganglia. These differences in NA and DmnX axon cardiac projections raise the question as to whether they target the same, distinct, or overlapping populations of cardiac principal neurons. To address this issue, we examined vagal terminals in cardiac ganglia and tracer injection sites in the brain stem using two different anterograde tracers [1,1'-dioleyl-3,3,3',3'-tetramethylindocarbocyanine methanesulfonate and 4-[4-(dihexadecylamino)-styryl]-N-methylpyridinium iodide] and confocal microscopy in male Sprague-Dawley rats. We found that 1) NA and DmnX neurons innervate the same cardiac ganglia, but these axons target separate subpopulations of principal neurons and 2) axons arising from neurons in the NA and DmnX in the contralateral sides of the brain stem enter the cardiac ganglionic plexus through separate bundles and preferentially innervate principal neurons near their entry regions, providing topographic mapping of vagal motor neurons in left and right brain stem vagal nuclei. Because the NA and DmnX project to distinct populations of cardiac principal neurons, we propose that they may play different roles in controlling cardiac function.

brain stem; parasympathetic; anterograde tracing; heart; baroreflex

VAGAL EFFERENT NERVE ACTIVATION induces negative chronotropic, dromotropic, and inotropic changes in the heart (13, 16). Our knowledge, however, of how the brain stem circuitry is organized to control the heart via the vagus is limited because of the complexity of brain-heart connections and limitations of previous anatomic techniques (8).

Vagal efferent preganglionic axons arise mainly from neurons in two brain stem nuclei [the nucleus ambiguus (NA) and the dorsal motor nucleus of the vagus (DmnX)], whereas a small number of vagal efferent axons arise from neurons in the intermediate zone between DmnX and NA. The functional roles of cardiac neurons in these nuclei are not well understood (6, 8, 11, 13, 16, 25). Furthermore, neurons in different cardiac ganglia control heart rate, arteriovenous (A-V) conduction, and myocardial contractility (17, 18, 20–22). In contrast to the conventional concept that cardiac ganglia are simple relay stations for central nervous system input, these structures are more likely operating as complex integration centers (19, 23).

They consist of sensory neurons, motor neurons, and interneurons that employ complex chemical coding (12, 26) and are involved in local, as well as central, cardiac reflexes (1, 19, 23, 27). Thus a major question is how cardiac ganglia are innervated and controlled by neurons in the NA and DmnX in the brain stem.

Traditionally, it has been assumed that the NA is the major vagal motor neuron pool controlling the heart, whereas neurons in the DmnX play only a minor role in cardiac control (13, 16). Using anterograde tracing and confocal microscopic techniques, however, we recently demonstrated that neurons in both NA and DmnX project to each cardiac ganglion where their axons form extensive basket endings around ganglionic principal neurons (6, 8). Therefore, this anatomic evidence suggests that both nuclei could be important for cardiac function. Consistent with this morphological evidence, physiological data also support the functional significance of the two nuclei: 1) electrical stimulation of vagal efferent B fibers (presumably from NA) and vagal C fibers (presumably from DmnX) selectively evokes bradycardia, A-V block, and reduction of cardiac contractility (9, 14, 15, 29); 2) stimulation of the DmnX elicits bradycardia and reduces myocardial contractility (4, 10, 24); 3) activation of the NA induces negative chronotropic, dromotropic, and inotropic effects (2, 3, 17, 28); and 4) both DmnX and NA neurons are barosensitive (30). However, whether the two vagal motor nuclei perform different functional roles remains unclear.

To study the difference between the NA and DmnX, we first compared cardiac projections of the two nuclei (6, 8). DmnX and NA motor neuron projections to the heart differ significantly: 1) efferent axons originating from NA neurons project to the heart and diverge and innervate principal neurons three times as much as the efferent fibers arising from DmnX neurons, 2) axons arising from NA neurons are larger in caliber than those arising from DmnX neurons, and 3) fibers from DmnX neurons project to small intensely fluorescent cells (SIF; presumably interneurons) as well as to cardiac principal neurons, whereas axons from NA neurons innervate only principal neurons. Furthermore, we used domoic acid, an excitatory neurotoxin that acts on glutamate receptors, to selectively lesion the NA and DmnX. Lesions of the NA almost completely abolished the baroreflex control of the heart.
rate, whereas lesions of the DmnX did not, suggesting that the NA plays a more important role in baroreflex control of the heart rate than the DmnX (5, 31).

Morphological and physiological differences between the NA and DmnX raise the question of whether the NA and DmnX control the heart through different pathways and whether axons arising from neurons in these two nuclei target different populations of intrinsic cardiac principal neurons. We hypothesized that vagal fibers originating from neurons in the NA and DmnX project separately to cardiac ganglia, so that they innervate different populations of cardiac neurons and control different aspects of cardiac function. Alternatively, axons arising from NA and DmnX neurons might converge to innervate the same cardiac neurons because recruitment of C fibers from the DmnX does not increase the degree of cardiac slowing produced by stimulation of B fibers arising from NA (cf., Ref. 13).

To elucidate these issues, we used a double-labeling strategy and confocal microscopy to examine dual projections of the NA and DmnX neurons to the heart. Our results show that neurons in the NA and DmnX project to neurons throughout individual cardiac ganglia. Rather than innervating the same principal neurons, however, these two vagal nuclei project to separate subpopulations of principal neurons within each cardiac ganglion.

Methods

Male Sprague-Dawley rats (300–350 g; Harlan Industries, Indianapolis, IN) were used for all experiments and were divided into four groups. The experimental protocols were approved by the Institutional Animal Care and Use Committee at the University of Louisville and are in agreement with the National Institutes of Health guidelines for the care and use of laboratory animals.

In the first tracing group, each animal received a series of unilateral DmnX injections of the tracer 1.1'-dioleyl-3,3',3'-tetramethylindocarbocyanine methanesulfonate, rhodamine red (DiI; catalog 3886; Molecular Probes, Eugene, OR) paired with injections of 4-[4-(di-hexadecylamino)-styrly]-1-N-methylpyridinium iodide, fluorescein yellow-green (DiA; catalog 3883; Molecular Probes) in the contralateral NA. The injection sites were off center from the target nuclei, data were discarded from further analysis.

Tracer injection in the DmnX and NA. Each animal in the tracing groups was anesthetized with pentobarbital sodium (60 mg/kg ip), treated with atropine (1 mg/kg sc), and placed in a stereotoxic instrument equipped with a head holder adapted to permit the neck to be flexed sharply. A dorsal incision was made over the neck muscles, which were retracted to expose the atlanto-occipital membrane. The membrane was opened with an incision, exposing the cisterna magna and the dorsal medulla. The occipital bone was trimmed with the bit of a dental drill until the caudal cerebellum was visible. The caudal end of the area postrema was used as a reference for stereotoxic coordinates. A glass micropipette, filled with DiI or DiA and connected to a picospritzer, was then advanced to the DmnX or NA. DiI or DiA was injected in small aliquots (2.5–12.5 nl each) either at seven different sites for DmnX (1,200 to +1,120 μm; total volume 17.5–87.5 nl) or at nine different sites (−1,600 to +1,600 μm; total volume 22.5–112.5 nl) for NA, separated 400 μm longitudinally. All analyzed animals had well-placed injections, as confirmed by post-mortem examination; medullary injection sites tended to fuse longitudinally. Injections were considered to be well placed only if 1) the injections, and their central cores, were centered in the DmnX and NA at all frontal levels, 2) the injection spheres extended minimally both ventrally from the DmnX and dorsally to the NA, and 3) the injection sites primarily covered the bulk of the longitudinal extent of the DmnX and the NA.

Tissue preparation. Three weeks were allowed for the tracers to be transported to the heart. Animals were anesthetized with an overdose of pentobarbital sodium (100 mg/kg) and perfused through the heart with 0.9% saline (300 ml) and 10% phosphate-buffered (pH = 7.4, 600 ml) formalin. Nodose ganglia and brain stems were removed. Each brain stem containing the entire DmnX and NA was stored in 10% sucrose formalin overnight and sectioned transversely at 100 μm on the second day. Thoracic vagal trunks, with the cardiopulmonary branches attached from the level of recurrent laryngeal nerves to a level 3 mm caudal to the junction of the inferior vena cava and the right atrium, were also dissected. Atria were then separated and cut open as previously described (7). Briefly, the left atrium tissue block included the region of the junction with pulmonary veins; the right atrium had the superior vena cava, inferior vena cava, and the left precava vein attached. The interatrial septum was separated from atria. Tissue surrounding the heart was gently removed, using extreme care to avoid peeling off the ganglionated plexuses (8) on the dorsal surface of the atria. Tissue was then dehydrated through graded concentrations (70%, 90%, and 2 × 100%) of glycerin for 4 h. Finally, the tissue was mounted and covered with a cover slip in 100% glycerin and n-propyl gallate (5%) to prevent fading.

Examination of DiI and DiA injection sites. Brain stem slices were initially examined at ×100 magnification using an epifluorescence microscope equipped with filter cubes appropriate for DiI, DiA, and FG and were later scanned using a confocal microscope (Zeiss LSM 510) at ×250 magnification. To present the registrations of DiI and DiA injection sites in vagal motor nuclei in a complete fashion, a montage of individual confocal projection images was assembled using Adobe Photoshop 5.5. DiI injection sites were evident by labeling with orange-red to red colors; DiA injection sites were in the yellow-green or green part of the spectrum; and FG-labeled neurons appeared blue in color.

Data acquisition and analysis of dual vagal injections in intrinsic cardiac ganglia. A detailed description of the data acquisition strategy has been published previously (6, 8). Briefly, cardiac and nodose ganglia specimens were screened with a conventional epifluorescence microscope equipped with filter cubes appropriate for DiI (rhodamine), DiA (FITC), and FG (UV). When DiI and DiA nerve fibers and endings were both found in the same region of cardiac ganglia at
DiA injection in the NA.

We used a triple labeling technique to efferent both DmnX and NA of intrinsic cardiac ganglionic neurons. Both DmnX and NA efferent fibers innervate different populations of intrinsic cardiac ganglionic neurons. Both DmnX and NA efferent fibers entered the epicardium of the atria and innervated the ganglia in all identified cardiac ganglionated plexuses (8). Frequently, DmnX and NA fibers and endings were found in the same cardiac ganglion with axons forming basket endings around cardiac principal neurons. As previously observed, DmnX neurons innervated SIF cells as well. In contrast, NA neurons did not. Figure 2 illustrates three examples showing that the DmnX and NA project to nonoverlapping, different subpopulations of neurons within the same ganglion. We have carefully examined such doubly labeled DiI and DiA terminals in 605 frames of confocal images randomly sampled from three ganglionated plexuses (which included 3,025 DiI and 1,815 DiA basket endings) and found that DmnX and NA neurons project to completely distinct populations of cardiac principal neurons in these plexuses.

Ipsilateral DmnX and NA efferent fibers distribute and innervate the same subregion of cardiac ganglia but different populations of principal cardiac neurons. Ipsilateral DmnX and NA axons entered cardiac ganglia in the same bundle and innervated different populations of cardiac principal neurons. Figure 3A is a montage of 26 frames of confocal projections and shows that DiI- and DiA-labeled fibers are intermingled and form basket endings very close to each other. The DiI and DiA basket endings are interdigitated within the plexus. Examination of the DiI and DiA labeling in each frame of this large montage did not reveal converging projections to the same principal neurons. It should be pointed out that DiA is a weaker tracer than DiI in the sense that it labels fewer axons and terminals. Therefore, the DiA-labeled axons and endings projecting from the NA in Fig. 3 do not appear as strongly labeled as those of DiI-labeled axons and endings. When

\[E \times 200 \text{ magnification, their locations were recorded for subsequent detailed confocal microscopic analysis at } \times 400 \text{ magnification. The digitized confocal images were stored on compact disks.}

Consistent with earlier observations (6, 8), three major ganglionated plexuses labeled by FG were identified in the epicardium of the atria under UV light. Within each plexus, multiple ganglia were found (8). Using stacks of optical sections collected with the confocal microscope through filter cubes appropriate to DiI and DiA, we examined the dual innervation of DmnX and NA cardiac axons and their terminal endings in each of the three ganglionated plexuses. Dual vagal axonal innervation of the three plexuses was examined systematically and completely. Stacks of confocal optical sections that contained both DiI and DiA fibers and endings were analyzed sequentially, and each cell apposed by labeled varicosities or fiber swellings was considered as being innervated. The presence and close proximity of varicosities were the criteria for judging a labeled fiber to have contact with a cell (6, 8).

RESULTS

Histological verification of DiI injection in the DmnX and DiA injection in the NA. We used a triple labeling technique to verify the DiI and DiA injection sites. Figure 1 is a montage of confocal photomicrographs obtained from a cross section of the brain stem at the level of the area postrema. Figure 1 shows that DiI injections in the left DmnX covered the whole left DmnX as well as some neurons in the medial portion of the right DmnX, whereas the DiA injections covered most of the NA. Therefore, both tracer injections were in precise registration with their targeted sites.

DmnX and NA efferent fibers innervate different populations of intrinsic cardiac ganglionic neurons. Both DmnX and NA efferent fibers entered the epicardium of the atria and projected with their targeted sites.
tracers were switched, i.e., the DmnX was injected with DiA and the NA was injected by DiI, the axons and endings arising from the NA appeared much denser and stronger, as shown in Fig. 4, D and E. Therefore, it was necessary to switch tracers to investigate fluorescence properties of these tracers.

Contralateral DmnX and NA efferent fibers innervate neurons in separate subregions of intrinsic cardiac ganglionic plexuses. Axons arising from neurons in contralateral DmnX and NA entered a cardiac ganglionated plexus via separate routes or connectives at different entry points (a connective is...
a mixture of extrinsic and intrinsic nerves connecting two separated cardiac ganglia in a ganglionated plexus). Each plexus contains a number of ganglia. Figure 4 includes three montages that show the right NA and left DmnX project to a cardiac ganglionated plexus (also see Fig. 5 of Ref. 8 for an FG-labeled cardiac ganglionated plexus and different connectives at low magnification). Figure 4A shows that a bundle of DiA-labeled NA fibers enters the plexus from a connective at one entry region, tending to innervate principal neurons situated near their respective entries. A: NA fibers enter the plexus from the top right and produce dense basket endings around principal neurons located in the vicinity of the entrance site. Only a couple of DiI endings are seen. B: DmnX fibers enter the same plexus from the bottom left and densely innervate principal neurons at this entry. C: in the middle of this plexus, abundant NA and DmnX fibers and endings are seen, and they together form a complex neural network. C', C'', C''' expose “one” neuron pointed by an arrow in C, which appears to be innervated by both DiI and DiA endings. Through examination of consecutive optical sections, 2 neurons were visualized instead of 1, and these 2 neurons are separately innervated by DiI and DiA, as indicated by the arrows in C' and C'''. In addition, a filled triangle points to 5 SIF cells in C''' (note smaller size compared with principal neurons). As in Fig. 3, the NA and DmnX project to separate populations of principal neurons. Scale bar: 30 μm for A, 50 μm for B and C, and 40 μm for C', C'', and C'''. D: confocal photomicrographs showing projections from NA (labeled DiI) and DmnX (labeled DiA) neurons to a cardiac ganglion. E: optically sectioned image of the field in D indicating that DiA-labeled (DmnX) and DiI-labeled (NA) endings innervate different principal neurons. Scale bar: 40 μm for D and E.

Fig. 4. A–C: montages of confocal photomicrographs show that neurons in left DmnX (DiI labeled) and right NA (DiA labeled) innervate topographically distinct regions within an intrinsic cardiac ganglionated plexus. In this plexus, the DiA-labeled NA fibers (green or yellowish-green) and DiI-labeled DmnX fibers (red or orange-red) enter the plexus through separate entry points. The NA and DmnX fibers tend to innervate principal neurons situated near their respective entries. A: NA fibers enter the plexus from the top right and produce dense basket endings around principal neurons located in the vicinity of the entrance site. Only a couple of DiI endings are seen. B: DmnX fibers enter the same plexus from the bottom left and densely innervate principal neurons at this entry. C: in the middle of this plexus, abundant NA and DmnX fibers and endings are seen, and they together form a complex neural network. C', C'', C''' expose “one” neuron pointed by an arrow in C, which appears to be innervated by both DiI and DiA endings. Through examination of consecutive optical sections, 2 neurons were visualized instead of 1, and these 2 neurons are separately innervated by DiI and DiA, as indicated by the arrows in C' and C'''. In addition, a filled triangle points to 5 SIF cells in C''' (note smaller size compared with principal neurons). As in Fig. 3, the NA and DmnX project to separate populations of principal neurons. Scale bar: 30 μm for A, 50 μm for B and C, and 40 μm for C', C'', and C'''. D: confocal photomicrographs showing projections from NA (labeled DiI) and DmnX (labeled DiA) neurons to a cardiac ganglion. E: optically sectioned image of the field in D indicating that DiA-labeled (DmnX) and DiI-labeled (NA) endings innervate different principal neurons. Scale bar: 40 μm for D and E.

R630 DUAL VAGAL CARDIAC EFFERENT PATHWAYS

AJP-Regul Integr Comp Physiol • VOL 286 • APRIL 2004 • www.ajpregu.org

Downloaded from http://ajpregu.physiology.org/ by 10.220.33.5 on October 6, 2016.
Projection of DmnX and NA efferent fibers to cardiac ganglia: counterbalancing DiA and DiI. To examine whether our results were influenced by the differential fluorescence properties of DiI and DiA, we switched the tracers used to inject the DmnX and NA. In eight animals, we injected DiA unilaterally in the DmnX and DiI in the NA (either ipsilateral or contralateral). Comparable to previous labeling using alternate tracers in the brain stem nuclei, DiA-labeled baskets are among numerous DiI baskets. Individually, DiA- and DiI-labeled basket formations were evident. Labeled axons arising from the DmnX and NA innervated different populations of principal neurons in the same cardiac ganglion (Fig. 4, D–E). Therefore, our results did not depend on tracer fluorescence properties.

In contrast to the dense DiI-labeled axons and terminals projecting from the DmnX in Fig. 3, the DiA-labeled axons and basket endings projecting from the DmnX in Fig. 4D were much more sparse than the DiI-labeled axons and terminals originating from the NA, indicating that DiA is a weaker tracer.

Specificity of DiI and DiA labeling. We injected tracers to the DmnX and NA to label the cardiac motor axons and terminals in the heart. Three types of potential secondary labeling could occur. First, a tracer injection in the DmnX could also label ipsilateral NA neurons and vice versa. Second, a tracer injection in the DmnX or NA could also label the contralateral DmnX or NA. Third, a tracer injection in the DmnX or NA could label the nucleus of the solitary tract (NTS) region, and the vagal afferent terminals might pick up the tracer and transport it to the heart. For example, DiI injection in the DmnX may label NA, contralateral DmnX, and NTS; and DiA injection in the NA may label contralateral NA, DmnX, and NTS. Obviously, such potential problems could affect the interpretation of our findings.

According to our previous studies and after thorough examination of the brain stem, nodose ganglia, and atrial tissues used in the present study, we did not observe any evidence suggestive of such technical problems. Indeed, previously we have shown that DiI injections in the DmnX or NA did not label the other nucleus (6, 8). The present study confirms these findings. In addition, after examination of the atrial tissue whole mounts, no flower spray sensory terminals were found. Because flower-spray terminals are the major type of afferent terminals (7), we conclude that tracer injections did not label any vagal afferents in the heart. Examination of brain stem serial sections did not show any labeled contralateral NA neurons. In contrast, as shown in Fig. 1, tracer injections in the DmnX could label the contralateral DmnX, especially in the caudomedial portion of the nucleus, since the left and right DmnX are close to the midline and to each other at this level. Such contralateral labeling may account for the occasional DiI axons in the DiA bundle. However, this relatively limited technical issue concerning the two sides of the caudal DmnX has no bearing on our major observation that the DmnX and NA project to different populations of cardiac neurons.

It should be pointed out that it was important to make a relatively large injection of DiI in the DmnX, as shown in Fig. 1, because a major aim of the present study was to test the hypothesis that the NA and DmnX project to the same cardiac ganglia but different populations of principal neurons therein. Therefore, we aimed to label as many DmnX and NA cardiac motor neurons as possible such that more DiI- and DiA-labeled terminals colocalizing at the same region within a cardiac ganglion would be available for analysis.

Such strategy, however, could lead to a potential leak of the tracer to the contralateral DmnX, as shown in Fig. 1, and might affect our finding that neurons in the right and left brain stem topographically project to the different subdivisions of the plexus. To eliminate such possibility, we quantitatively estimated the maximal number of fibers being labeled from the contralateral DmnX and the innervation pattern of these axons. DiI was injected in the left DmnX. The left cervical vagal trunk was transected in two rats to evaluate the extent of spread in the contralateral DmnX. In these animals, 5 to 7 axons and 20–28 basket endings were found, corresponding to 7.4% of the total axons and 3.9% of the total baskets, which were estimated previously as originating from the left DmnX projection (8). Thus only a minority of fibers on the contralateral DmnX was labeled by injections we employed in our experiments. In contrast to the well-labeled DiI axons from the ipsilateral DmnX that entered the heart in large bundles (Fig. 4, A and B; also see Refs. 6 and 8), these sparse secondarily labeled axons were weakly labeled and randomly distributed in the cardiac ganglionated plexuses. Because in the majority of other animals the large DiI and DiA bundles were separated and entered ganglionated plexuses through different pathways and because the secondarily labeled fibers from the contralateral DmnX appeared weakly labeled, and sparsely and randomly distributed, the secondary labeling of the contralateral DmnX neurons should not detract from our findings.

DISCUSSION

Our results indicate that neurons in the NA and DmnX send axons that converge to the same cardiac ganglia and innervate distinctive principal neurons in these ganglia. Furthermore, we propose that neurons in the left and right sides of the brain stem vagal nuclei project axons topographically to different neuronal subdivisions within the cardiac ganglionated plexuses. Our previous findings have shown that the NA and DmnX project axons to neurons in cardiac ganglia differentially with respect to the size of projection fields, axon caliber, and terminal targets (6, 8). We have also found that lesions of the NA almost completely abolish the baroreflex control of the heart rate (31) and that lesions of the DmnX do not change the baroreflex sensitivity (5, 31). Collectively, our data support the hypothesis that the NA and DmnX play different roles in the regulation of cardiac function.

Topographical representation of left and right vagus in cardiac ganglionated plexuses. As mentioned above, the left and right vagal cardiac axons enter the cardiac ganglionated plexus through different routes. This observation raises the possibility that the left and right brain stem may have a well-defined topographical representation of the heart. Furthermore, this may indicate that cardiac ganglionated plexuses are not homogeneous structures and that they may be organized hierarchically to receive functionally related inputs from the vagal brain stem nuclei in a topographical pattern. Whether our findings provide the anatomic basis for certain physiological observations indicative of left and right vagus lateralization is worthy of future investigation.

Regarding the topographic projections of the vagal motor nuclei to cardiac ganglionated plexuses, an additional intrigu-
ing issue is whether the different regions of the DmnX and NA project to different areas of cardiac ganglionic plexuses. In dogs and cats, Massari and colleagues (3, 17) found that different locations of the NA projected to different cardiac ganglia in fat pads and had differential control over the heart rate, A-V conduction, and left ventricle contractility. Such data in the rat are not currently available. Our present dual-labeling strategy, i.e., injection of different areas of the NA or DmnX with two tracers simultaneously and subsequent examination of cardiac ganglionic plexuses with the confocal microscope, may provide a novel method for future investigation of this issue.

NA and DmnX cardiac motor neurons: functional significance. Conventionally, the NA was considered the major vagal motor nucleus that controls the heart. Recently, we demonstrated that neurons in the DmnX also project substantially to the heart, implying that the DmnX might control cardiac function as well. The present finding that NA and DmnX project to the same cardiac ganglia suggests that they could both modulate the heart rate, A-V conduction, and myocardial contractility (6) because the adjacent cardiac principal neurons are thought to have similar cardiac functions. From these data, we reasoned that NA and DmnX might be both involved in baroreflex control of heart rate.

To study the functional role of the NA and DmnX, we injected domoic acid to disrupt the integrity of the NA and DmnX, respectively, and studied their respective roles in baroreflex effect on the heart rate. To our surprise, lesions of the DmnX did not affect baroreflex sensitivity (5). In contrast, lesions of the NA almost completely eliminated baroreflex control of heart rate, indicating that the NA is critical for baroreflex control (31), whereas the DmnX is not.

Whether the DmnX may control the heart through some other cardiac reflexes is an interesting issue. Because the NA and DmnX innervate nonoverlapping populations of cardiac principal neurons and play different roles in baroreflex, we hypothesize that the NA and DmnX may play distinct roles in different cardiopulmonary reflexes. Actually, it has been postulated that the DmnX may mediate pulmonary C-fiber-evoked bradycardia (15, 28).

In summary, neurons in two spatially separated medullary nuclei, the NA and DmnX, project axons to separate nonoverlapping populations of interspersed cardiac neurons. These findings provide the anatomic framework to account for the possibility that the NA and DmnX may have different functional roles in controlling the heart. The exact nature of such potential functional differences of the two nuclei and the property of the two populations of cardiac principal neurons await further studies.

ACKNOWLEDGMENTS

We thank Dr. Terry I. Powley and Dr. William Wead for generous support of our present work and helpful comments on this report.

GRANTS

Z. J. Cheng was supported by American Heart Association Grant 9930173N and National Institutes of Health (NIH) Grant AG-021020-01A1. D. Gozal was supported by NIH Grants HL-63912 and HL-69932 and the Commonwealth of Kentucky Research Challenge Trust Fund.

REFERENCES

23. Randall WC, Wurster RD, Randall DC, and Xi-Moy SX. From cardioaccelerator and inhibitory nerves to a “heart brain”: an evolution of

