Chemical activation of C1-C2 spinal neurons modulates intercostal and phrenic nerve activity in rats

Fang Lu, Chao Qin, Robert D. Foreman, and Jay P. Farber

Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190

Submitted 30 July 2003; accepted in final form 28 January 2004

Lu, Fang, Chao Qin, Robert D. Foreman, and Jay P. Farber. Chemical activation of C1-C2 spinal neurons modulates intercostal and phrenic nerve activity in rats. Am J Physiol Regul Integr Comp Physiol 286: R1069 –R1076, 2004. First published February 5, 2004; 10.1152/ajpregu.00427.2003.—Chemical activation of upper cervical spinal neurons modulates activity of thoracic respiratory interneurons in rats. The aim of the present study was to examine the effects of chemical activation of C1-C2 spinal neurons on thoracic spinal respiratory motor outflows. Electroneurograms of left phrenic (78 mmHg during experiments. Cervical vagi were sectioned bilaterally. The average maximal tonic activity of ICN was increased by 174% (n = 59). After spinal transection at rostral C1, glutamate on C1-C2 still increased ICN tonic activity in 33/35 ICNs. However, the effects of C1-C2 glutamate on ICN phasic activity were highly variable, with observations of augmentation or suppression of both inspiratory and expiratory discharge. C1-C2 glutamate augmented the average amplitude of phrenic burst by 20%, whereas the increases in amplitude of ICN inspiratory activity, when they occurred, averaged 120%. The burst rate of phrenic nerve discharge was increased by 10.220.33.1 on August 28, 2017 http://ajpregu.physiology.org/ Downloaded from

METHODS

Experiments were performed on 36 male Sprague-Dawley rats weighing 320–460 g (Charles River, Boston, MA). The protocol was approved by the University of Oklahoma Health Sciences Center Institutional Animal Care and Use Committee and followed the guidelines of the American Physiological Society and the Institutional Association for the Study of Pain. Anesthesia was initially induced with a bolus injection of pentobarbital sodium (60 mg/kg ip). Supplemental doses (30–40 mg/kg ip) were given to maintain anesthesia if necessary, until decerebration was completed. A catheter was placed in the left jugular vein for continuous saline infusion (0.5–1.0 mL·kg⁻¹·h⁻¹) throughout experiments. The right carotid artery was cannulated to monitor arterial blood pressure (ABP). Mean ABP was ≥80 mmHg during experiments. Cervical vagi were sectioned bilat-
erally. After muscle paralysis with pancuronium bromide (0.4 mg/kg iv), animals were artificially ventilated with room air administered by a volume-controlled pump (50–55 strokes/min, 3–5 ml stroke volume). Supplemental doses of pancuronium bromide (0.2 mg·kg⁻¹·h⁻¹ iv) were administered to maintain muscle relaxation so that no spontaneous respiratory movement was seen after the ventilator pump was stopped. Rectal temperature was kept between 37 and 38°C by using a servocontrolled heating blanket.

Decerebration was performed using a modified technique described in previous studies (35, 39). Briefly, bilateral windows (3 × 5 mm) through the parietal bones were made with care to avoid damaging the central sagittal and transverse sinuses. Complete transection of the brain stem at the precollicular level was made using a fine wire cautery blade. A wedge of brain tissue was then mechanically removed to avoid damage of the basilar artery on the floor of the skull cavity. Small pieces of gel foam or saline cotton balls were used to stop bleeding.

A dorsal approach was used to expose the left phrenic nerve as it crossed the brachial plexus in the neck and was crushed peripheral to the recording site. A bipolar platinum hook electrode was placed around the nerve to monitor central respiratory drive. Similar electrodes were placed around left external and/or internal intercostal nerves at various thoracic levels (T3–T8) after they were dissected and crushed distal to the recording site. To obtain stable recordings of neural activity and protect nerves from drying, the electrodes were fixed to the nerves by dental impression material. To assure an adequate intercostal nerve signal, CO₂ (up to 3.5%, average 1.7 ± 0.2%) was added to the inspired air in the majority of animals. We used positive end-expiratory pressure (2–4 cm H₂O) throughout an experiment if the thoracic cavity was opened during surgery (n = 5).

Neural signals were amplified, filtered (300–3,000 Hz), and documented online with the Spike 3 data-acquisition system (CED, Cambridge). Neural discharges were also monitored audibly through speakers during experiments.

Laminectomies were performed to expose the C₁-C₂ spinal segments. To chemically activate C₁-C₂ spinal neurons, glutamate (1 M) was absorbed onto filter paper pledgets (2 × 2 mm) and was placed on the dorsal surface of C₁-C₂ segments (27, 33). Because 1 M glutamate is hypertonic and hyperosmotic compared with extracellular...
lar fluid, 1 M saline pledgets were applied to the same sites before or after glutamate application as control. After 1 min, pledgets were removed and the spinal cord was flushed with physiological saline. At least 20 min elapsed between applications of pledgets on C1-C2 segments. This time was sufficient for nerve activity to return to control levels. Spinal transection at rostral C1 segment was made with a scalpel blade to interrupt respiratory drive from supraspinal structures. Intercostal nerve (ICN) tonic activities elicited by glutamate on C1-C2 were compared before and after transection. At the end of experiments, animals were euthanized with an overdose of pentobarbital sodium (120 mg/kg iv). Locations and completeness of decerebration and spinal transection were confirmed by postmortem examination.

Neural recordings were made from the left phrenic nerve and ICNs beginning 4 h after the last injection of pentobarbital sodium. This allowed for metabolism and excretion of pentobarbital and release of pentobarbital suppression on thoracic respiratory reflexes. For sampling of phrenic activity and ICN phasic and tonic activities, a period of 15 s before stimulation was taken as control. Maximum effects on respiratory rate (breaths/min) and tonic discharge from ICNs also were obtained over a 15-s time period. Maximum effects on phasic ICN discharge were typically more transient than effects on tonic discharge or on rate of breathing. For this reason, to obtain the maximal phasic responses, inspiratory time, and amplitudes of phasic activities of phrenic nerves and ICNs were quantified by averaging three consecutive phasic discharges. Durations of tonic or phasic responses of ICNs and phrenic nerves to chemical activation of C1-C2 spinal neurons were measured from onset of response to the time when neural activity recovered to control level. Latency of responses was measured from the beginning of chemical stimulation to the beginning of tonic or phasic responses.

Data are presented as means ± SE throughout the text. Acquired respiratory nerve activities were high-pass filtered at 300 Hz, rectified, and integrated (0.04 s bin) with the Spike 3 data-acquisition system. Statistical comparisons were made by using Student’s paired or unpaired t-test, χ2, or ANOVA analysis plus Tukey’s test. Statistical significance was established as P < 0.05.

RESULTS

Discharge Patterns of ICN

Electroneurograms for the left phrenic nerve and one to three ICNs at various levels of the spinal cord (T3-T8) were recorded simultaneously in 36 rats. According to phrenic nerve activity, the discharge patterns of ICNs (n = 93) were classified as inspiratory (Insp, n = 39), expiratory (Exp, n = 27), or biphasic (Biph, n = 27). Phasic ICN activity increased in a ramp or step-ramp manner. Inspiratory ICNs exhibited discharges during the inspiratory phase (Fig. 1A), and this activity was more frequently recorded from external ICNs than internal ICNs (27/29 vs. 12/64, P < 0.01). Expiratory ICNs discharged during the expiratory phase (Fig. 1B), and those discharges were obtained much more often from internal ICNs than external ICNs (25/64 vs. 229, P < 0.05). Most Exp ICNs (25/27, 93%) commenced discharging in the late period of the expiratory phase and terminated abruptly at inspiratory onset. This type of ICN activity was classified as Exp-late (Fig. 1B).

Two Exp ICNs discharged during the whole expiratory phase and were classified as Exp-all (Fig. 1B). Biphase ICNs discharged in both inspiratory and expiratory phases and were obtained only from internal ICNs, which were further divided into two subgroups: Exp-late and Exp-early according to the onset of expiratory discharges (Fig. 1C).

Distributions of the three discharge patterns at different spinal levels are shown in Fig. 1D. ICNs from T3 to T8 were selected randomly for nerve recording. The probability of obtaining inspiratory activity in external ICNs from rostral (T1-T5) segments was not significantly different from caudal (T6-T8) segments (8/8 vs. 19/21). Analogously, expiratory activity in internal ICNs from rostral segments was similar to caudal segments (11/35 vs. 14/29). However, 70% (19/27) of

![Fig. 2](http://ajpregu.physiology.org/Downloadedfrom)
ICNs with biphasic discharges were obtained from rostral segments compared with eight ICNs from caudal segments.

Effects of C1-C2 Glutamate on ICN Activity

To examine the propriospinal descending modulation of ICN activity by the upper cervical spinal cord, neural activities of ICNs in 23 rats were examined after application of glutamate and hypertonic (1 M) saline on the dorsal surface of C1-C2 segments.

Tonic activity. Glutamate on C1-C2 increased ICN tonic activity in most ICNs (56/59, 95%, Fig. 2B). For all ICNs tested, the average maximal response of tonic activity increased significantly by 174 ± 19.9% (P < 0.01, n = 59). The average latency and duration of tonic responses to glutamate on C1-C2 were 3.0 ± 0.6 and 73.0 ± 5.4 s, respectively. Hypertonic saline (1 M) on C1-C2 did not significantly change tonic activity of ICNs (n = 48, Fig. 2A). After spinal transection at rostral C1 segment, glutamate on C1-C2 still increased ICN tonic activity in 33/35 ICNs (Fig. 2C). The average maximal tonic activity of ICNs increased by 116 ± 14.9% (P < 0.01, n = 35). Figure 2D shows responses among ICNs with different types of respiratory activity. Tonic responses to glutamate on C1-C2 were similar among ICN groups of Insp, Exp, and Biph in the intact spinal cord (ANOVA, P > 0.05). However, responses of Insp ICNs to C1-C2 glutamate were less than for Exp and Biph ICNs after rostral C1 transection (ANOVA and Tukey’s test, P < 0.05). No significant differences were found for net increases in ICN tonic activity by C1-C2 glutamate and for ICN tonic baseline before and after spinal transection.

Table 1. Response patterns of ICN phasic activities to glutamate on C1-C2

<table>
<thead>
<tr>
<th>Discharge Patterns</th>
<th>Response Patterns to C1-C2 Glutamate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aug</td>
</tr>
<tr>
<td>Insp</td>
<td>11</td>
</tr>
<tr>
<td>Exp</td>
<td>10</td>
</tr>
<tr>
<td>Insp/Exp</td>
<td>4/7</td>
</tr>
</tbody>
</table>

Values are the number of nerves. Insp, inspiratory activity; Exp, expiratory activity; Aug, augmentation; Sup, suppression.

ICNs with biphasic discharges were obtained from rostral segments compared with eight ICNs from caudal segments.

Effects of C1-C2 Glutamate on ICN Activity

To examine the propriospinal descending modulation of ICN activity by the upper cervical spinal cord, neural activities of ICNs in 23 rats were examined after application of glutamate and hypertonic (1 M) saline on the dorsal surface of C1-C2 segments.

Fig. 3. Effects of C1-C2 glutamate on ICN phasic activity. A–D: typical responses among ICNs. Aug, augmentation; Sup, suppression. Bimodal responses showed either Aug-Sup or Sup-Aug. E: comparison of effects of C1-C2 glutamate and hypertonic saline on expiratory peak activity of ICNs: ICNs with expiratory peak augmentation during C1-C2 glutamate or hypertonic saline were selected. Exp Peak, expiratory peak; Lat, latency; T-P, time to peak; Dur, duration; n, number of nerves; *P < 0.05; **P < 0.01.
Phasic activity. Responses of ICN phasic activity with glutamate on C1-C2 were highly variable (Table 1). Of the 38 ICNs with inspiratory discharges, 35 (92%) ICNs exhibited augmentation and/or suppression of inspiratory peak activity with C1-C2 glutamate. In the 34 ICNs with expiratory discharges, 32 (94%) ICNs exhibited changes of expiratory peak activity with C1-C2 glutamate. Inspiratory activity in 3/38 ICNs and expiratory activity in 2/34 ICNs did not change with glutamate on C1-C2. Examples of ICN phasic responses during glutamate on C1-C2 are shown in Fig. 3, A–D.

Augmentation. For ICNs showing inspiratory peak augmentation with C1-C2 glutamate (n/H11005 21, including augmented component of bimodal responses that included augmentation and suppression), the average inspiratory peak activity increased by 120.0/H11006 20.3% (P/H11021 0.01) and responses lasted 35.5/H11006 8.1 s. For ICNs showing expiratory peak augmentation with C1-C2 glutamate (n/H11005 23, including augmented component of bimodal responses), the average expiratory peak activity increased by 245.4/H11006 64.8% (P/H11021 0.01) and responses lasted 88.3/H11006 9.8 s. No significant difference was found between augmentations of inspiratory and expiratory peak activity with glutamate on C1-C2.

Comparing the augmented phasic responses of upper (T3-T5) and lower (T6-T8) ICNs to glutamate on C1-C2, the percent increase of peak activity in lower ICNs (197/H11006 31.0%) was significantly higher than in the upper ICNs (83/H11006 14.6%, P/H11021 0.01).

Suppression. For ICNs showing inspiratory peak suppression (n/H11005 20, including suppressed components of bimodal responses), the average inspiratory peak activity decreased by 84.6/H11006 5.7% (P/H11021 0.01) and responses lasted 52.0/H11006 8.0 s. For ICNs showing expiratory peak suppression (n/H11005 15, including suppressed component of bimodal responses), the average expiratory peak activity decreased by 95.3/H11006 4.6% (P/H11021 0.01) and lasted 48.8/H11006 7.2 s. In contrast to phasic augmentation, phasic suppression of ICNs by C1-C2 glutamate was not different between upper and lower thoracic levels.

Effects of C1-C2 Saline on ICN Activity

Among 33 ICNs with inspiratory discharges, 27 ICNs exhibited no change in inspiratory peak activity after 1 M saline on C1-C2, whereas 4 ICNs were augmented and 2 were suppressed. The average inspiratory peak activity did not change significantly. However, in 25 ICNs with expiratory discharges, 16 exhibited expiratory peak augmentation with 1 M saline on C1-C2, whereas 2 were suppressed and 7 did not show significant changes. For ICNs showing expiratory augmentation with saline (n/H11005 16), the average expiratory peak activity increased by 72.4/H11006 17.9% (P/H11021 0.01), which was less (P/H11021 0.05) than after glutamate application (245.4/H11006 46.8%, n/H11005 23, Fig. 3E).

Effects of C1-C2 Glutamate on Phrenic Nerve Activity

Activities of 23 left phrenic nerves were examined for responses to C1-C2 glutamate and hypertonic saline. Glutamate on C1-C2 decreased the phrenic burst rate in 17/23 nerves and augmented the amplitude of phrenic discharges in 21/23 nerves. The average respiratory rate was significantly reduced from 34.2/H11006 1.6 to 26.3/H11006 2.0 breaths/min (Fig. 4Aa, n/H11005 23, Fig. 4: Effects of C1-C2 glutamate and hypertonic saline on phrenic nerve activity. Aa, Ab: summary and an example of phrenic responses to C1-C2 glutamate (1 M). Ba, Bb: summary and an example of phrenic responses to C1-C2 hypertonic saline (1 M). PA, peak activity of phrenic burst; RR, respiratory rate; Ti, inspiratory time. C: comparison of effects of C1-C2 glutamate on phasic activities of phrenic nerve and ICN: nerves with augmentation (Aug) and/or suppression (Sup) of peak activity during C1-C2 glutamate were selected. Numbers on tops of columns represent the number of nerves. Phr, phrenic peak activity; IP, inspiratory peak of ICNs; EP, expiratory peak of ICNs.
The present study demonstrated that phasic and tonic ICN activity changed dramatically with glutamate on C1-C2, although small changes in phrenic nerve activity were also observed simultaneously. The effect of C1-C2 glutamate on respiratory rate indicates that supraspinal components were involved.

Firing Patterns of ICNs

ICN firing patterns in adult rats have been reported previously by Tian and Duffin (34, 35). Neural activity recorded from the rostral (T2-T5) external intercostal nerves was generally confined to the inspiratory phase, with little discharge occurring during expiration, except in nerves from caudal (T6-T8) segments. However, both inspiratory and expiratory activity was observed from internal ICNs and mainly from rostral spinal segments. In spinal segments T6-T8, less activity was observed in either respiratory phase, but when present, it was mostly expiratory. In the present study, the firing patterns of ICN activity are similar to the results observed from rats and cats (1, 14, 17, 23, 34, 35). This includes the distribution of inspiratory and expiratory activity in external and internal intercostal nerves and the appearance of inspiratory activity in both internal and external intercostal nerves in the rostral segments. However, the present study showed that there were no significant differences between rostral (T3-T5) and caudal (T6-T8) spinal segments for recording inspiratory discharges from external ICNs (8/8 vs. 19/21) and for recording expiratory discharges from internal ICNs (11/35 vs. 14/29). Taking into account biphasic ICNs, similar chances of recording inspiratory activities were also obtained from caudal and rostral spinal level (52 vs. 48%). This investigation used artificially ventilated, vagotomized, and decerebrated animals. To assure good intercostal nerve signals, CO2 was added to the inspired air for normocapnia. Differences between this study and other investigations also may be explained in part by position of the electrodes. Distance from the ventral root outlet can influence the composition of fibers, and position of the electrode on the mixed nerve can affect the fibers recorded.

Responses of ICNs to C1-C2 Glutamate

Glutamate applied on the surface of spinal cord has been used to activate cell bodies in the cervical spinal cord in previous studies (2, 26, 27, 29, 31, 33) because it does not also affect passing nerve fibers (18). Chemical activation of upper cervical spinal neurons with glutamate primarily inhibits thoracic spinal neurons responsive to splanchnic stimulation, chemical stimulation of cardiac afferents, and noxious esophageal distension (12, 26). It also reduces excitatory responses of lumbar-sacral spinal cells to noxious colorectal distension and decreases their spontaneous activity (29). This descending inhibition does not require supraspinal structures, because it still occurs after spinal transection at the rostral C1 segment in rats (29). More recently, it was shown that upper thoracic TRINs, which are located mainly in deeper dorsal horn and intermediate zone, could either be inhibited (45% of TRINs) or excited (31% of TRINs) with glutamate on the C1-C2 segment (28). Because some thoracic interneurons are likely responsible for transmitting respiratory drive to intercostal motor neurons, it appears reasonable that chemical activation of upper cervical spinal neurons in this study resulted in either augmentation or suppression of phasic respiratory ICN activity. In contrast, C1-C2 glutamate increased ICN tonic activity in 95% of cases. This difference might occur because phasic activity of ICNs most likely depended on respiratory motor outflow, whereas tonic activity of ICN could also result from nonrespiratory activation of ventral horn neurons.

In the present study, effects of C1-C2 glutamate on ICN tonic activity still occurred after spinal transection at rostral C1 segment. This demonstrated that descending modulation of C1-C2 spinal neurons on ICN tonic activity did not require supraspinal sites. However, we could not determine the extent

Figure 5. Summary model: possible pathways for modulation of ICN activity by chemical activation of C1-C2

For details, see Summary Model and Possible Implications.
to which changes in phasic activity of ICNs depended on spinal vs. supraspinal mechanisms because respiratory drive was lost after spinal transection. Nonetheless, phasic increases in inspiratory ICN activity were much greater than for phrenic nerve, and some ICN inspiratory activities were suppressed. These data suggest that significant propriospinal modulation of thoracic respiratory motor activity is possible.

Responses of Phrenic Nerve to C1-C2 Glutamate

Results of the present study showed that glutamate on C1-C2 significantly decreased respiratory rate and augmented phrenic nerve peak activity, although the latter changes were much smaller than for inspiratory activity of ICNs. However, glutamate on C1-C2 did not significantly affect central respiratory drive monitored by phrenic nerve activity in a previous study where the animals were anesthetized with pentobarbital sodium and not vagotomized (28). It is possible that lack of anesthesia and/or vagotomy in the present study resulted in this difference.

It is unclear how chemical activation of C1-C2 spinal neurons may have influenced phrenic amplitude and respiratory rate. Phrenic motoneurons within C3-C6 levels of the cervical spinal cord in rats are connected monosynaptically with bulbospinal respiratory neuronal groups that generate and integrate central respiratory drive (6, 9, 19, 34). Therefore, synapses from C1-C2 neurons onto phrenic motoneurons are not required. Another possibility is that descending propriospinal pathways from C1-C2 might influence the activity of thoracic propriospinal neurons, which in turn project back to phrenic motor nuclei in the midcervical spinal cord. However, after spinal transection at C7-C8 segments, C1-C2 glutamate still changed phrenic activity (rate and amplitude) in 3/3 rats. Most likely, C1-C2 spinal neurons activated by glutamate could project to medullary respiratory groups and influence central respiratory activity. C1-C2 spinal neurons with projection to dorsal or ventral groups of respiratory neurons in the medulla have not been directly examined. However, anatomical studies have shown that large numbers of neurons in the upper cervical spinal cord have ascending projections to respiratory-related areas of the brain stem (10, 15, 16). These pathways are possible candidates for effect of C1-C2 glutamate on central respiratory activity in the present study.

Summary Model and Possible Implications

Figure 5 represents a model for C1-C2 descending modulation of thoracic motor activity suggested by the present results and relevant literature. Stimulation of C1-C2 neurons strongly influences thoracic respiratory and nonrespiratory (tonic) activities of efferent intercostal nerves T3-Ts. Because of the diversity of respiratory responses, we speculate that observed effects arise through changes in activity of respiratory and possibly nonrespiratory thoracic interneurons (thoracic spinal integration). Because the tonic response persists after C1 transection, at least part of the pathway is due to propriospinal descending modulation. The small increase in phasic activity of the phrenic nerve was most likely mediated through ascending pathways from C1-C2 to medullary regions that can modify phrenic output. The lack of tonic activation of the phrenic nerve with C1-C2 glutamate may be due to the generally monosynaptic activation of this motor pool from the medulla; this finding also argues against significant modulation by C1-C2 inspiratory neurons located in laminae V and VII. Compared with the effects of C1-C2 glutamate on phrenic nerve outflows, effects on ICNs were stronger and more diverse. This finding is again consistent with propriospinal descending modulation of the latter.

The present results suggest that the upper cervical spinal cord serves not only as a site for visceral afferent convergence and integration as shown previously (5, 7, 30, 38), but might also be the origin of projections to respiratory-related pools of neurons in thoracic spinal cord and brain stem. Such projections may represent potential pathways through which central respiratory activity is influenced by nociceptive and nonnociceptive information from the spinal cord. These integrative mechanisms could help shape respiratory motor responses to nonnoxious and noxious visceral stimulation.

ACKNOWLEDGMENTS

The authors thank Dr. M. J. Chandler for very helpful comments and D. Holston for expert technical assistance.

F. Lu is a visiting scientist from School of Life Sciences and Technology of Xian Jiaotong University, People’s Republic of China.

GRANTS

The study was supported by National Institute of Neurological Disorders and Stroke Grant NS-35471.

REFERENCES

