Functional coupling of adenine nucleotide translocase and mitochondrial creatine kinase is enhanced after exercise training in lung transplant skeletal muscle

Karen Guerrero,1 Bernard Wuyam,2 Paulette Mezin,3 Isabelle Vivodtzev,2 Marko Vendelin,1 Jean-Christian Borel,2 Rachid Hacini,4 Olivier Chavanon,4 Sandrine Imbeaud,5 Valdur Saks,1 and Christophe Pison1,6

1Laboratoire de Bioénergétique Fondamentale et Appliquée, Institut National de la Santé et de la Recherche Médicale E221, Université Joseph Fourier, Grenoble, France; 2Laboratoire d’Exploration Fonctionnelle Cardio-Respiratoire, 3Laboratoire de Pathologie Cellulaire, and 4Service de Chirurgie Cardiaque, Centre Hospitalier Universitaire de Grenoble, France; 5Genexpess, Génomique Fonctionnelle et Biologie des Systèmes pour la Santé LGN, UMR 7091, Centre National de la Recherche Scientifique et Université Pierre et Marie Curie, Paris, France; 6Département de Médecine Aiguë Spécialisée, Centre Hospitalier Universitaire de Grenoble, France

Submitted 1 April 2005; accepted in final form 26 May 2005

LUNG TRANSPLANTATION (LT) has become an established option for end-stage respiratory diseases (35). Among such unresolved issues as organ shortage and development of progressive chronic dysfunction is limitation of maximal O2 consumption (VO2max) after LT, which was studied since the early 1990s without definitive explanations (7, 9, 10, 16, 17, 20, 22, 34, 41, 42) (see Ref. 43 for review). VO2max is broadly determined by three major factors: ventilatory capacity, maximal cardiac output, and O2 consumption by the working muscles. Lung transplant recipients (LR) exhibit normal cardiac and ventilatory responses to exercise; therefore, skeletal muscle dysfunction is thought to explain limitations (7, 9, 10, 16, 17, 20, 22, 34, 41, 42, 43). Systemic effects of chronic respiratory failure before LT (2, 26) and potential effects of immunosuppressants, especially the vehicle of cyclosporin A (15), have been proposed as explanations for limitations in VO2max and decreased exercise capacity after LT. However, the molecular mechanisms of the limitations in O2 consumption in this acquired myopathy remain obscure for LR, even if reductions in skeletal muscle mass and type I fibers play an important role (2, 9, 26, 41, 43). Energy metabolism is thus involved in the genesis of the impairment of exercise capacity. At present, there exists a reliable technique to determine the mitochondrial oxidative capacity in human skeletal muscle: the permeabilized or skinned fiber technique (29, 44). This technique explores mitochondrial oxidative phosphorylation in situ without isolation of these organelles. This allows the measurement of mitochondrial respiration in situ in small biopsy samples. The content of mitochondria in the tissue and their functional capacities can easily be evaluated. In particular, this technique has already been used for studies of mitochondrial function in inspiratory muscles of patients with chronic obstructive pulmonary disease (25) and skeletal muscles of heart transplant recipients before and after rehabilitation (46).

The aims of the study were to look for alterations in the intracellular organization in energy metabolism, i.e., mitochondrial respiration and energy transfer via phosphocreatine shuttle and, if present, the relevance of mitochondrial bioenergetics in limitations of skeletal muscle performance in LR (3) and...
whether home exercise training can improve these abnormalities (4, 34).

METHODS

Subjects and Experimental Design

Twelve healthy males, recruited from acquaintances of investigators and free of any medications, were enrolled in the study as a control group (C). Twelve LR (35 ± 28 mo post-LT) were also included. Antirejection maintenance treatment consisted of prednisone, 0.1 mg/kg on average, tacrolimus, and mycophenolate mofetil (Table 1). Most LR received antihypertensive treatments such as calcium blockers or angiotensin-converting enzyme inhibitors. LR were free of acute and/or significant chronic rejection (except the 49-yr-old LR) or infection during the study. C and LR were examined before and after a 3-mo period of exercise training. Participants gave their voluntary consent. The protocol was approved by the ethics committee of our institution.

Body Composition, Pulmonary Function, and Exercise Testing

Fat-free mass was measured with bioelectrical impedance analysis at 50 kHz, and the equation from Kyle et al. (15) was used. Pulmonary function was measured using standard techniques according to American Thoracic Society/European Respiratory Society recommendations (23). Lung function measurements consisted of 1) forced expiration from which 1-s forced expiratory volume, forced vital capacity, and expiratory flow-volume loops were derived and 2) thoracic gas volumes, which were determined in a plethysmograph (Medical Graphics, St. Paul, MN). Pulmonary function measurements are shown in Tables 1 and 2.

Maximal incremental and constant workload cycle exercise was performed as detailed below.

First, for maximal incremental cycling exercise, subjects were seated on an electrically braked ergocycle (Ergometer 900PC, Ergoline) driven by Vmax system 229 software (SensorMedics, Yorba Linda, CA). Gas exchanges were analyzed by the standard open-circuit method with an automated computer analysis system (Vmax 2130 automated spirometer, SensorMedics). Continuous monitoring of gas exchange provided measurements of O2 uptake (V\textsubscript{O2}), CO2 excretion, and minute ventilation (V\textsubscript{E}). The expired O2 and CO2 fractions were analyzed by breath with zirconium electrochemical and infrared cell gas analyzers, respectively. Expiratory flow was measured with a hot wire pneumotachograph held with a mouthpiece. After 5 min of resting and 2 min of warm-up at 20 W, a progressive stepwise exercise was performed up to the individual’s maximal capacity. Workload increments were 5 and 15 W/min for LR and C, respectively. Subjects were considered to have achieved maximal VO\textsubscript{2} if at least three of the four following criteria were met: 1) no further increase in VO\textsubscript{2} with increasing workload, 2) respiratory exchange ratio >1.1, 3) maximal heart rate ≥ 90% of the maximal predicted value, and 4) plasma lactate concentration > 8 mmol/l. In other cases, tests were considered as symptom-limited exercise testing. Power output at the ventilatory threshold (W\textsubscript{ventilatory threshold}) was determined as the power output for which an abrupt and nonlinear increase in VT (minimal value of VT\textsubscript{O2}VO\textsubscript{2}) was observed over the incremental test.

Second, for endurance cycling exercise, subjects were seated on the ergocycle, and gas exchange was analyzed under the same conditions as previously described. After 5 min of resting and 2 min of warm-up at 20 W, a steady-state exercise was performed up to exhaustion. Exercise intensity was set at 70% of the maximal power output (W) reached by the subjects during their initial maximal incremental exercise. After exercise training, the maximal exercise test was repeated. The endurance test was also repeated on the same day, with the same load as the initial test, and the patient was allowed to...
Table 2. Effects of exercise training

<table>
<thead>
<tr>
<th>Exercise Training</th>
<th>Before</th>
<th>After</th>
<th>P</th>
<th>C vs. LR P</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI, kg/m²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>24 ± 3.4</td>
<td>24 ± 2.7</td>
<td>0.58</td>
<td>0.05</td>
</tr>
<tr>
<td>LR</td>
<td>22 ± 2.7</td>
<td>22 ± 2.0</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>FEV₁, %predicted</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>108 ± 12</td>
<td>106 ± 9.7</td>
<td>0.20</td>
<td>0.0003</td>
</tr>
<tr>
<td>LR</td>
<td>74 ± 24</td>
<td>77 ± 26</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>FVC, %predicted</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>109 ± 13</td>
<td>109 ± 11</td>
<td>0.82</td>
<td><0.0001</td>
</tr>
<tr>
<td>LR</td>
<td>78 ± 16</td>
<td>82 ± 18</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>W_max, W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>224 ± 56</td>
<td>255 ± 67</td>
<td><0.001</td>
<td><0.0001*</td>
</tr>
<tr>
<td>LR</td>
<td>85 ± 43</td>
<td>98 ± 42</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Pventilatory threshold, W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>112 ± 36</td>
<td>125 ± 42</td>
<td>0.09</td>
<td><0.0001</td>
</tr>
<tr>
<td>LR</td>
<td>42 ± 21</td>
<td>52 ± 25</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>V̇O₂max, l/min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2.9 ± 0.67</td>
<td>3.1 ± 0.70</td>
<td>0.01</td>
<td><0.0001</td>
</tr>
<tr>
<td>LR</td>
<td>1.2 ± 0.56</td>
<td>1.4 ± 0.51</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>V̇O₂max, %predicted</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>101 ± 16</td>
<td>113 ± 23</td>
<td>0.02</td>
<td><0.0001</td>
</tr>
<tr>
<td>LR</td>
<td>63 ± 20</td>
<td>68 ± 19</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Endurance time at 70% W_max, min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>36 ± 19</td>
<td>41 ± 13</td>
<td>0.08</td>
<td>0.04</td>
</tr>
<tr>
<td>LR</td>
<td>20 ± 10</td>
<td>31 ± 14</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Fiber type I, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C, n = 11</td>
<td>42 ± 21</td>
<td>36 ± 8.6</td>
<td>0.37</td>
<td>0.0008</td>
</tr>
<tr>
<td>LR, n = 11</td>
<td>16 ± 2.6</td>
<td>24 ± 17</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>Vₐ, nmol O₂min⁻¹·mg dry wt⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C, n = 11</td>
<td>0.51 ± 0.34</td>
<td>0.75 ± 0.52</td>
<td>0.10</td>
<td>0.51</td>
</tr>
<tr>
<td>LR</td>
<td>0.68 ± 0.36</td>
<td>0.79 ± 0.56</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>Vₐmax, nmol O₂min⁻¹·mg dry wt⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C, n = 11</td>
<td>3.5 ± 1.5</td>
<td>4.3 ± 2.9</td>
<td>0.38</td>
<td>0.50</td>
</tr>
<tr>
<td>LR</td>
<td>3.2 ± 1.7</td>
<td>2.9 ± 1.3</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>Vₐ, nmol O₂min⁻¹·mg dry wt⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C, n = 10</td>
<td>0.71 ± 0.38</td>
<td>1.5 ± 1.0</td>
<td>0.04</td>
<td>0.49</td>
</tr>
<tr>
<td>LR</td>
<td>0.79 ± 0.35</td>
<td>1.1 ± 0.68</td>
<td>0.12</td>
<td></td>
</tr>
</tbody>
</table>

Values are means ± SD. BMI, body mass index; Vₐ, basal mitochondrial respiration in the presence of glutamate (5 mM) and malate (2 mM); Vₐmax, maximal mitochondrial respiration rate; Vₐmax, mitochondrial respiration rate in the presence of atracyloside, an inhibitor of adenine nucleotide translocase (ANT). ANOVA with 2 factors: 1) effects of exercise training and 2) group effect. *Significant interaction between the effects of exercise training and the groups; LR vs. C.

Local anesthesia (1% xylocaine) was injected into the skin of the thigh without crossing the muscle aponeurosis to avoid mitochondrial uncoupling. One part of the biopsy sample was immediately immersed in ice-cold relaxing medium (solution A complemented with 0.2% BSA) and used for preparation of fibers (see Preparation of permeabilized muscle fibers). The second part was immediately frozen in isopentane, which was cooled by liquid nitrogen for enzymatic, morphological studies. The third part of the biopsy sample was fixed with 2.5% glutaraldehyde for electron microscopic study.

Electron microscopy. Semifine cross sections (1–2 μm) were prepared with a Leica Microsystems microtome and stained with toluidine blue. Fine sections (0.07 μm) were prepared with a Reichert-Jung microtome, stained with uranyl acetate and lead citrate, mounted on 300-mesh grids, and examined under a CM10 Philips electron microscope.

Muscle fiber types. The muscle cross sections (10 μm) were preincubated at pH 4.35. After they were stained for myosin ATPase, fibers were visually counted to determine the percentage and the mean diameter of each fiber type (8). Morphometric measurements were performed with Histo Biocom software (Les Ulis, France).

Preparation of permeabilized muscle fibers. The nonfrozen parts of the biopsy samples that had been immediately immersed in ice-cold relaxing medium (solution A complemented with 0.2% BSA) were used in these experiments. Thin bundles of fibers were then separated by sharpened needles in ice-cold solution A with 0.2% BSA. After dissection, fibers were incubated in solution A with 50 μg/ml saponin, 30 min, at 4°C and mild stirring. They were then washed three times in solution B with 0.2% BSA, 10 min, at 4°C and mild stirring to eliminate the detergent and the endogenous metabolites (29).

Determination of the rate of mitochondrial respiration in skinned fibers. The main mitochondrial reactions studied to characterize the muscle energy metabolism are schematically shown in Fig. 1. The...
rates of $\dot{V}O_2$ were recorded by using a two-channel, high-resolution respirometer (Oroboros Oxygraph, Paar, Graz, Austria) in solution B (measurement of ADP kinetics of respiration) or using KCl solution for cytochrome c test (for composition, see below). Activity of respiratory chain complexes was determined in KCl solution with 2 mg/ml BSA plus 5 mM glutamate, 2 mM malate, 2.5 μM rotenone, 5 mM succinate, 32 μM myxothiazol, 5 mM ascorbate, 1 mM tetramethylpentadecane, and 5 mM KCN. Determinations were carried out at 25°C; solubility of O$_2$ was taken as 215 mmol/ml.

Solution A contained (in mM) 1.9 CaK$_2$EGTA, 8.1 K$_2$EGTA (free calcium concentration of 0.1 μM), 9.5 MgCl$_2$, 0.5 DTT, 50 potassium-MES, 20 imidazole, 20 taurine, 2.5 μM rotenone, 5 mM succinate, 32 μM myxothiazol, 5 mM ascorbate, 1 mM tetramethylpentadecane, and 5 mM KCN. Solution B contained (in mM) 1.9 CaK$_2$EGTA, 8.1 K$_2$EGTA, 4.0 MgCl$_2$, 0.5 DTT, 100 potassium-MES, 20 imidazole, 20 taurine, and 3 K$_2$HPO$_4$, pH 7.1, adjusted at 25°C.

KCl solution for cytochrome c test contained (in mM) 125 KCl, 20 HEPES, 3 magnesium acetate, 5 KH$_2$PO$_4$, 0.4 EGTA, and 0.3 DTT, pH 7.1, adjusted at 25°C.

For respiration rate determinations, 2 mg/ml BSA was added; 5 mM glutamate and 2 mM malate were added as substrates.

Reagents. All reagents were purchased from Sigma except ADP, which was obtained from Boehringer-Mannheim.

Statistical Analysis

Values are expressed as means \pm SD. Comparisons were made using two-way ANOVA, with one factor corresponding to comparisons between C and LR and the second comparing before and after exercise training. Significant interactions within these two factors are reported. $P < 0.05$ was taken as the level of significance.

RESULTS

Comparisons Between C and LR Before Exercise Training

Table 1 reports clinical characteristics in LR and C. The male-to-female ratio was 12:0 for C and 10:2 for LR. Body-mass index was lower, as well as 1-s forced expiratory volume and forced vital capacity in LR (Table 2). No subject exhibited ventilatory limits during maximal cycling exercise test. As expected, W_{max}, $W_{ventilatory threshold}$, $V_{O2 max}$ (in l/min or %predicted), and endurance times were much lower in LR compared with C (Tables 1 and 2).

Histochemical determination of fiber types is reported in Fig. 2A for C and Fig. 2C for LR. LR had a significantly lower percentage of type I fibers compared with C (Table 2). Figure 3, A and C for C and LR, respectively, shows examples of mitochondrial arrangement in the fibers along the direction of sarcomere orientation analyzed by electron microscopy. Most mitochondria were localized close to the z-line, as characteristic for the glycolytic and oxidative-glycolytic fibers. In some places, a small amount of intermyofibrillar mitochondria was seen.

Exercise Training Effects in C and LR

Exercise training had physiological effects in both groups with regard to W_{max}, $W_{ventilatory threshold}$, and $V_{O2 max}$ (Table 2), with a trend toward more pronounced effects in LR. Endurance time increased by 55% in LR, whereas it did not reach significance in C. External ventilation significantly decreased after exercise training for comparable workloads in C and LR (data not shown). Interestingly, the fiber-type distribution (Fig. 3B for C and Fig. 3D for LR) and diameters of both fiber types were not significantly changed by exercise training. Analysis of multiple electron micrographs did not reveal any visible changes in the arrangement of mitochondria in the cells after exercise training (Fig. 3B in C and Fig. 3D in LR).

Mitochondrial Respiration Before and After the Exercise Training Period

Before exercise training, LR mitochondrial respiratory chain capacity was similar to C. The basal rate of respiration was obtained in the presence of 5 mM glutamate and 2 mM malate, substrates of the complex I of the respiratory chain (Figs. 1 and 4). The usually low basal rate of respiration...
corresponds to the state 2 of the respiratory chain where the membrane potential (gradient of electrochemical potential of protons) is generated. After addition of ADP, transported into mitochondrial matrix in exchange for ATP by adenine nucleotide translocase (ANT) (Fig. 1), the membrane potential is used for the synthesis of ATP (state 3 of respiratory chain). Due to a decrease of the membrane potential, the respiration rate in state 3 is increased manyfold in the presence of ADP at a high concentration (2 mM) to achieve the maximal rate of respiration (V_{max}, Fig. 4D). This phenomenon is called acceptor control, and the ratio of the respiration rate in state 3 to that in state 2 is called the acceptor control ratio (ACR). Figure 4D shows that basal respiratory rate was very low and ACR exceeded 8, giving evidence for an intact inner membrane and effective coupling between oxidation and phosphorylation in the skeletal muscle mitochondria in LR and C. The integrity of the outer mitochondrial membrane was assessed by the cytochrome c test (14). The absence of the effect of exogenous cytochrome c (8 μM) on the respiration rate in the KCl medium showed integrity of this membrane (Fig. 4D). Addition of atractyloside resulted in a decrease of respiration to state 2 (Table 2, Fig. 4, A and B). In C, basal respiratory rate and V_{max} values were close to those found in the literature (25, 46), and the ACR values indicated a high degree of coupling between oxidation and phosphorylation (data not shown). With glutamate and malate as substrates, the basal respiratory rate and V_{max} values were not significantly different in C and LR (Table 2). Activities of respiratory chain complexes (by activating and inhibiting fragments of the respiratory chain) did not reveal any alteration of the oxidative phosphorylation in the mitochondrial inner membrane of LR before and after exercise training compared with C (data not shown).

Effect of ADP and creatine on mitochondrial respiration before exercise training. Successive additions of exogenous ADP in increasing concentrations up to 2 mM resulted in an increase of the respiration rate. For high concentrations of ADP (2 mM), V_{max} was reached (Fig. 4, A and B). Apparent K_m for exogenous ADP was calculated from the double-reciprocal plot of these kinetic data (Fig. 4C). Apparent K_m for exogenous ADP represents the sensitivity of mitochondria for ADP, including on the one hand the permeability of the outer mitochondrial membrane (voltage-dependent anion channel) and on the other hand cytoplasmic diffusion restrictions for exogenous ADP induced by cellular structures (31, 36). When these experiments were repeated in the presence of 20 mM creatine, the kinetics of respiration regulation by exogenous ADP was changed, i.e., addition of small amount of ADP rapidly increased the respiration rate (Fig. 4, B and C) by decreasing the apparent K_m for exogenous ADP (increasing affinity for ADP). This is explained by the functional coupling of the mitochondrial creatine kinase (MtCK) with ANT (Fig. 1). The V_{max} of respiration in the presence of creatine was the same or higher than in the absence of creatine (Fig. 4B). The functional coupling between MtCK and ANT is the natural mechanism of regulation of respiration by ADP locally produced from mitochondrial ATP by the MtCK localized at the outer surface of the inner mitochondrial membrane (Figs. 1 and 7).}

![Electron microscope images. A and B: regular organization of pairs of mitochondria at the z-line level in a control quadriceps muscle before and after training, respectively. C and D: samples were taken from LR quadriceps muscle before and after training. In this case, mitochondrial regular arrangement is conserved on both sides of the sarcomeres. Note that mitochondrial morphology is normal in all images. Bars = 1 μm.](http://ajpregu.physiology.org/)}
K_m corresponded to the muscle fiber-type distribution in control fibers (Table 2). In the presence of creatine (20 mM), the apparent K_m for ADP decreased significantly to 57 ± 31 μM because of the local regeneration of ADP by MtCK in the intermembrane space. This ADP was more efficient in stimulation of respiration than the exogenous ADP. This explains the drop in K_m and shows interaction between MtCK and ANT in skeletal muscle mitochondria. The creatine effect on the apparent K_m for exogenous ADP was calculated as the difference between K_m in the absence of creatine and in the presence of creatine.

In LR before exercise training, although there was no statistically significant difference with C regarding the respiration rates (basal respiration rate and V_max), the apparent K_m was significantly lower (94 ± 34 μM) compared with C. This low value of apparent K_m was accompanied by a decrease in type I oxidative fibers in LR fiber (Table 2). Moreover, the stimulating effect of creatine was less apparent in LR (Fig. 5). The apparent affinity of mitochondria for ADP was significantly lower (94 ± 34 μM) compared with C (Fig. 5). These data underline the increased efficiency of the respiration regulation by creatine in C. The same pattern is seen in LR: the apparent K_m was significantly lower (94 ± 34 μM) compared with C. The apparent K_m for ADP decreased from 94 ± 34 to 203 ± 62 μM, whereas in the presence of creatine the apparent K_m increased from 94 ± 34 to 203 ± 62 μM, meaning a low affinity of mitochondria for ADP. In the presence of creatine, V_max is reached at lower concentrations of ADP. This is explained by the control of Cr on oxidative phosphorylation. At the end of the measure, Cyt c addition results in a decrease of respiration back to the basal rate of respiration (V_0), showing that we observe mitochondrial respiration.

Effects of ADP and creatine on mitochondrial respiration after exercise training. Figure 5 shows the dramatic effects of physical training on apparent K_m for exogenous ADP in both C and LR. In C, apparent K_m for exogenous ADP increased from 131 ± 26 to 260 ± 67 μM, whereas in the presence of creatine this parameter remained very low (Fig. 5). These data underline the increased efficiency of the respiration regulation by creatine in C. The same pattern is seen in LR: the apparent K_m increased from 94 ± 34 to 203 ± 62 μM and the creatine effect became highly significant after exercise training (Fig. 5). V_max values were unchanged after exercise training in all conditions, but V_max values with creatine increased by 58% in LR (P = 0.05) (data not shown).

Correlations of V_{O2max} and Endurance Time at 70% W_{max} Before and After Exercise Training

Before exercise training in C and LR (n = 24), V_{O2max} (ml·kg^{-1}·min^{-1}) was correlated with percentage of type I
fibers ($r = 0.69, P < 0.001$), apparent K_m for exogenous ADP ($r = 0.64, P = 0.001$), and V_{max} ($r = 0.44, P = 0.03$) (Fig. 6). W_{max} was correlated with percentage of type I fibers ($r = 0.77, P < 0.0001$) and the apparent K_m for exogenous ADP ($r = 0.58, P = 0.004$). Endurance time at $70\% W_{max}$ was related to percentage of type I fibers ($r = 0.72, P = 0.0001$), fat-free mass ($r = 0.53, P = 0.007$), and the apparent K_m for exogenous ADP ($r = 0.48, P = 0.02$).

After exercise training, $\dot{V}O_2_{max}$ (%predicted) changes were related to V_{max} changes in C and LR ($r = 0.55, P = 0.007$).

DISCUSSION

Using the saponin-skinned fiber technique, we provided new insights in the mechanisms of limitation of exercise capacity and the benefits of exercise training in LR in relation to C. Before exercise training, LR mitochondrial respiratory rates did not reveal any alterations compared with C rates, excluding deleterious effects of anticalcineurins. Before exercise training, there were strong correlations between exercise capacity ($\dot{V}O_2_{max}$ and endurance time) and cellular events, as assessed by the percentage of type I fibers (apparent K_m for exogenous ADP). Exercise training resulted in significant improvements in bioenergetics at both the cellular (apparent K_m for exogenous ADP and stimulating effect of creatine) and the integrated level ($\dot{V}O_2_{max}$, W_{max}, endurance time), which were initially lower in LR compared with C. Changes in $\dot{V}O_2_{max}$ and V_{max} were related. Changes in endurance time and percentage of type I fibers were also correlated. Because there were no changes in diameters and fiber types, baseline alteration of apparent K_m for exogenous ADP and its improvement after training might be related to changes within the intracellular energetic units (ICEUs) (Fig. 7). After training, as shown by ICEUs, there was a higher control of mitochondrial respiration by creatine linked to a more efficient functional coupling of ANT-MtCK, resulting in better exercise performances in C and LR.
factor, such as myoD, with a resulting preferential ubiquination of the myosin heavy chain, as in cancer cachexia (1). Among posttransplant factors, cardiac and ventilatory limitations do not play a significant role because, in LT, the heart is not denervated and ventilatory limits were not reached in our patients, despite lower pulmonary function tests (Tables 1 and 2). In rats, it has been shown that anticalcineurins via the vehicle of cyclosporin A are responsible for reduced exercise endurance time by a decay in mitochondrial oxidative phosphorylation via reduced complex I and IV activities (28). In a clinical setting such as LT, after cardiac transplantation, immunosuppressive therapy effects are negligible on mitochondrial respiration (46) since V_max in LR was not different from C (Table 2). Moreover, LR patients received tacrolimus as anticalcineurin therapy and were not exposed to cyclosporin A (15). It appears that skeletal muscle dysfunction acquired before LT plays a central role in exercise limitation after LT, as shown by Wang et al. (41) in LR and Richardson et al. (26) in chronic obstructive pulmonary disease. Our results confirmed that percentage of type I fibers plays a major role in V_O2 max, W_max, and endurance time in LR and C (26, 41) (Table 2 and Figs. 2 and 6).

Before exercise training, besides the important role of type I fibers, analyses of bioenergetic parameters such as apparent K_m for exogenous ADP, V_max, and stimulating effect of creatine on respiration give new insights into cell organization related to ATP production and channeling of energy transfer after the training period (Figs. 1, 6, and 7). Before exercise training in LR, our data showed that mitochondrial rates of respiration (V_max, basal rate, and mitochondrial respiration rate in the presence of atractyloside) were similar to control values (Table 2). Moreover, the activities of each respiratory chain complex gave normal responses to the different stimuli. This suggests that the intrinsic muscle oxidative capacities are normal in LR excluding complex I and IV inhibitions by anticalcineurins, as already reported in heart transplant recipients (46). On the
other hand, apparent K_m for exogenous ADP was significantly lower in LR compared with C (Fig. 5), mainly explained by the decreased percentage of type I fibers in LR skeletal muscle (Fig. 2C) (14).

Exercise Training Effects in LR and C

Improvement of apparent K_m for exogenous ADP. A sensitive parameter resulting from exercise training was the dramatic improvement in endurance time in LR. To our knowledge, it is the second report on benefits of exercise training in LR (34) and the first to use a home-based program for LR. We have found significant modifications of the cell energy metabolism parameters in permeabilized cells. After exercise training, a twofold increase in the apparent K_m for exogenous ADP without any significant fiber-type transition from glycolytic to oxidative muscles and no alterations in fiber diameter were observed in both groups (Figs. 2B and 5 and Table 2). This increase in apparent K_m for exogenous ADP resulted in more significant effects of creatine on mitochondrial respiratory parameters. Electron microscopic observations of biopsy materials showed in all cases similar cell structures and intracellular arrangement of mitochondria, mostly close to the z-line (Fig. 3). Therefore, the observed changes in biochemical parameters most probably indicated alterations in protein complexes in energy transfer pathways as discussed below.

It was found by Ventura-Clapier’s and Bigard’s (18, 44, 45) groups that voluntary activity induced specific alterations in the fast-twitch skeletal muscle, among which was the very significant (several times) increase in the apparent K_m for exogenous ADP in the regulation of respiration of the skinned cardiac fibers. Our present results give new important information to understanding this phenomenon. Our data excluded some plausible explanations such as influence of muscle hypertrophy and increase of the diffusion distances for exogenous ADP (33) and allowed the assumption of exercise-induced alterations in cell structure and protein complexes.

Creatine/phosphocreatine shuttle and metabolic channeling.

In the slow-twitch skeletal muscles, energy is transferred between mitochondria and myofilibrils by the creatine/phosphocreatine shuttle, whereas in the fast-twitch muscles the energy for contraction is supplied mostly by the glycolytic system via equilibrium cytoplasmic creatine kinase and coupled myofilibrillar MM-creatine kinase systems (12, 32, 37, 40). In the preparations of permeabilized fibers, a stimulating effect of creatine on ADP-stimulated respiration indicated a functional coupling between the MtCK and ANT by regeneration of local ADP (Fig. 1) (32). This local ADP, produced by MtCK in the vicinity of ANT, enters the mitochondrial matrix for rephosphorylation and activates respiration. These cycles are repeated many times, explaining the increase in the rate of respiration at much lower exogenous ADP concentrations in the medium in the presence of creatine, compared with those in its absence. The result is a decrease in apparent K_m for exogenous ADP in the presence of creatine, directly showing the functional coupling between MtCK and ANT.

ICEU and Mitochondrial Organization and Interactions

In the fast-twitch skeletal muscle, mitochondria are localized at the level of I band and close to z-lines and the T-tubular system (21, 38). This was mostly the case in the biopsy samples that we studied (Fig. 3). Oxidative skeletal muscles occupied intermediate positions between cardiac and glycolytic muscles with respect to quantity of mitochondria, which were localized both at I- and A-band levels (21). The value of the apparent K_m for exogenous ADP is very different in oxidative and glycolytic muscles (14). In the muscle samples with mixed fiber types, the value of the apparent K_m for exogenous ADP is between two extreme values (300–400 μM and 10–20 μM), depending on the fiber composition (14). These differences that exist between different types of muscles may be explained by the different structural and functional organizations of energy metabolism of the cells that exist due to distinct interactions between mitochondria, sarcoplasmic reticulum, and sarcomeres with the cytoskeleton (30). Furthermore, in oxidative cells, the formation of functional complexes between these structures, which are called ICEUs (30), gives rise to the unitary nature of energy metabolism in these cells. The structure of these energetic units is described in detail in Fig. 7.

In skeletal muscles with different mitochondrial positions, the structures may be different (30). These complexes play an important role in metabolic channeling of endogenous ADP by an effective functional coupling between local ADP production by enzymatic systems that consume ATP and its utilization for ATP synthesis in the mitochondrial matrix (Fig. 7) (5). These channeling mechanisms were related to the increased heterogeneity of the intracellular diffusion of ADP and ATP and local restrictions of their intracellular diffusion, due to the specific structural organization of the ICEUs. Thus, according to this limitation in adenine nucleotide diffusion, the increased value of the apparent K_m for exogenous ADP in permeabilized fibers showed a higher degree of structural organization of energy metabolism (30).

The role of the structural organization of the cells was clearly seen in other experiments after a nonelective proteolytic treatment of permeabilized fibers from oxidative muscles with trypsin (1 μM) (13). After this treatment, intracellular arrangement was lost and apparent K_m for exogenous ADP was decreased close to the value of isolated mitochondria (13). These data most probably show that some or many cytoskeletal proteins could be responsible for this specific cytoarchitecture and also for regulation of mitochondrial function within the muscle cells (6, 19).

Additionally, transgenic animals depleted of cytoskeletal proteins such as desmin, the predominant protein in muscle cells, display significant alterations of mitochondrial position in the cells and regulation of their respiration in situ (13). The proteins that may control the permeability of the mitochondrial outer membrane within the structure of ICEUs are shown in Fig. 7. The nature of the proteins that control mitochondrial position and function in the cells, however, is still not completely clear.

A complete picture will probably require the integration of data obtained from functional genomics approaches and modeling efforts. Progress toward this goal will come in the form of high-throughput methods to identifying the connections within the protein-protein and protein-DNA interaction networks. Thus the recent advances in these areas may provide us with a first glimpse of the overall structure of molecular interaction networks in this complex biological system. Their identification would be an interesting further task of muscle
cell proteomic analysis to find an explanation for the interesting phenomenon observed in this work.

Exercise activities may induce changes in the expression of these proteins and thus increase the restrictions of the exogenous ADP diffusion into the cells. The increase in restriction barriers may contribute to a better metabolic channeling within ICEUs, making the role of the creatine kinase-phosphocreatine pathway more important in the regulation of respiration. The observed statistically significant increase in the V_{max} of mitochondrial respiration measured in the presence of creatine is consistent with this conclusion and may partially explain the increase in V_{O2,max} in LR after exercise training (Table 2). These sensitive events could occur at an early stage and do not allow us to make any clear correlation with the integrated physiological parameters as they concern the intracellular level and do not involve muscle fiber changes (see Limitations of the Study). These processes could be compared with the early stage of cardiac ischemia, in which the functional coupling between MtCK and ANT is lost while the heart still has functional properties (27).

Limitations of the Study

Although two women were included in LR and none in C, this fact did not reach clinical and statistical significance and may not explain differences between LR and C before and after exercise training. More importantly, the 10-yr difference in favor of C compared with LR may explain the higher exercise capacity in C. Actually, as previously reported (24), the mitochondrial theory of aging does not explain the age-related decline of muscle performance in young and elderly healthy adults since mitochondrial oxidative capacity and ATP formation are unchanged.

Before exercise training, highly significant correlations between integrated physiological data and bioenergetic assessment at the cellular level were obtained, suggesting a role of the ICEUs in physical performance. This kind of correlation between improvement in effort tolerance and changes in intracellular metabolic channeling (apparent K_{m} for exogenous ADP and creatine effect) was not achieved after exercise training. This could be related to a type II error. Our hypothesis is that these changes, picked up at the cellular level, occur at the very early stages. This lack of correlation might be due to the methods that we used to assess muscular performance. In this regard, a segmental endurance muscular assessment would have resulted in better correlations between muscle performance and bioenergetic studies (26).

Conclusion

Muscle dysfunction in LR is mostly related to pretransplant factors because anticalcineurins did not result in mitochondrial dysfunction. Before exercise training, in LR and C, exercise capacity is related to skeletal muscle structure, i.e., fiber type and ICEU organization. Home exercise training is feasible and efficient in both LR and C. After exercise training, ICEUs exhibited a higher control of mitochondrial respiration by creatine linked to a more efficient functional coupling of ANT-MtCK, resulting in better exercise performances in C and LR.

ACKNOWLEDGMENTS

The Centre d’Investigation Clinique, Insenm of the Centre Hopsitalier Universitaire de Grenoble, and Béatrice Rival and Cécile Chérion (research assistants), as well as technicians from the pathology laboratory and the pulmonary function test laboratory, are acknowledged for logistic support. We are indebted to Elisabeth Maclet and technicians of AGIR à Dom, a home care association, for the excellent care they provided to the subjects for home exercise training. We are deeply indebted to our volunteers for enthusiastic participation. The contribution of Laurence Kay to some parts of the discussion is also gratefully acknowledged. We thank Dr. Dan Veale (Fellow of the Royal College of Physicians) for reviewing the English text.

REFERENCES

MUSCLE BIOENERGETICS IN LUNG TRANSPLANTATION

