Lysophosphatidic acid induces endothelial cell death by modulating the redox environment

Sonia Brault,1,2* Fernand Gobeil, Jr.,3* Audrey Fortier,3 Jean-Claude Honoré,1 Jean-Sébastien Joyal,1,2 Przemyslaw S. Sapieha,1 Amna Kooli,1,2 Élodie Martin,1,2 Pierre Hardy,1 Alfredo Ribeiro-da-Silva,2 Krishna Peri,4 Pierre Lachapelle,5 Daya Varma,2 and Sylvain Chemtob1,2

1Departments of Pediatrics, Ophthalmology, and Pharmacology, Research Centre of Hôpital Sainte-Justine, Montreal, Quebec; 2Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec; 3Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Quebec; 4Theratechnologies Inc., Montreal, Quebec; and 5Department of Ophthalmology, McGill University, Montreal Children’s Hospital, Montreal, Quebec, Canada

Submitted 30 August 2006; accepted in final form 13 November 2006

Lysophosphatidic acid (LPA), a key intermediate in glycolipid synthesis, is particularly abundant in the brain (16); its concentration increases further during injury (64) associated with oxidative stress and ensuing activation of phospholipases (7, 50), which catalyze LPA formation (52). LPA exerts its effects by activation of four G protein-coupled receptors, LPA1, LPA2, LPA3, and the distantly related and newly discovered LPA4 (reviewed in Ref. 31), which are coupled to G proteins Gαi/o, Gq,11,14 (LPA1, LPA2, and LPA3), and G12,13 (LPA1 and LPA2). LPA1, LPA2, and LPA3 are expressed by endothelial cells (20). However, the potential cytocidal action of LPA on brain microvascular cells has yet to be described. Compared with other cells of the microvasculature, endothelial cells are more susceptible to oxidative stress and inflammation (5, 8, 39, 54). Our group has previously shown that LPA triggers inflammatory pathways in cerebrovascular endothelial cells (20). However, the potential cytotoxic action of LPA on brain microvascular cells has yet to be described. We hypothesized that LPA modulates the cell redox environment in a receptor-dependent manner to elicit endothelial cell death and corresponding neuromicrovascular rarefaction.

MATERIALS AND METHODS

Animals. Yorkshire newborn pigs (Fermes Menard, L’Ange-Gardien, Quebec, Canada) and Sprague-Dawley rat pups (Charles River, St. Constant, Quebec, Canada) were used according to a protocol of the Hôpital Ste-Justine Animal Care Committee.

Endothelial and astroglial cell culture. Endothelial and astroglial cells were isolated from newborn pig brain, purified, and cultured as described previously (30).

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

* S. Brault and F. Gobeil, Jr. contributed equally to this work.
previously described (29). Adult porcine brain microvascular endothelial cells and human umbilical vein endothelial cells (HUVEC) were obtained from Cell Systems and Cambrex.

Cell viability assay. Cell viability was assessed as previously described (5, 35) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT; Sigma). Cells were treated with stearoyl-LPA (s-LPA; Palmitoyl-LPA (p-LPA), oleyl-LPA (o-LPA), oleoyl-lysophosphatidylcholine, oleoyl-lysophosphatidylethanolamine, dioleoylphosphatidic acid, cyclic phosphatidic acid (1 μmol/l; all from Avanti Polar Lipids), the thromboxane A2 mimic U-46619 (1 μmol/l; Cayman Chemical), 15-F2t-isoprostane (15-F2t-IsoP; 1 μmol/l; Cayman Chemical), or H2O2 (100 μmol/l; Fisher) for 24 h. In other experiments, cells were pretreated with established concentrations of the following inhibitors: PTX (25 ng/ml overnight; Calbiochem), the allosteric LPA1 antagonist THG1603 (1–100 μmol/l; Sigma), the COX inhibitor ibuprofen (1 μmol/l; Calbiochem), the iNOS inhibitor 1400W (1 μmol/l; Sigma), the NADPH oxidase inhibitor apocynin (50 units; Sigma), the lipid peroxidation inhibitor lazurid U-74389G (1 μmol/l; BIomol), catalase (500 units; Sigma), the NADPH oxidase inhibitor apocynin (50 μmol/l; Calbiochem), the iNOS inhibitor 1400W (1 μmol/l; Sigma), the COX inhibitor ibuprofen (1 μmol/l; Sigma), and the 5-lipoxygenase inhibitor MK886 (2 μmol/l; Biomol), the cytochrome P-450 inhibitor ketoconazole (30 μmol/l; ICN Biochemicals), the phospholipase A2 inhibitor dicytidine-5-phosphocholine (20 μmol/l; Calbiochem), the p38 MAPK inhibitor SB-203580 (5 μmol/l; Sigma), the JNK inhibitor SP600125 (1 μmol/l; BIomol). To avoid interference of MTT assay by NAC, the culture medium was removed and cells were rinsed with fresh medium before incubation with MTT (10). Cell viability was expressed as a percentage of optical density relative to control.

The nature of cell death (necrosis), defined as oncocytic (associated with plasma membrane leakage) or apoptotic [characterized by DNA fragmentation leading to terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) positivity] (47) was determined using the biochemical live-dead assay (Molecular Probes) and TUNEL (TACS TdT fluorescein kit; R&D Systems) according to the instructions of the manufacturer. The live-dead assay recognizes two parameters of cell viability: intracellular esterase activity and plasma membrane integrity, which are measured, respectively, by the active incorporation of calcein-AM in living cells and the passive incorporation of ethidium homodimer-1 (EthD-1) in oncotic cells (Molecular Probes).

Phase-contrast and electron microscopy. Phase-contrast micrographs of porcine cerebrovascular endothelial cells (pCMVEC) treated for 24 h with vehicle (control), s-LPA (10 μmol/l), or H2O2

Fig. 1. Effects of lysophosphatidic acid (LPA) on survival of newborn porcine cerebral microvascular endothelial cells (pCMVEC; A–E), adult pCMVEC, human umbilical vein endothelial cells (HUVEC), and astroglia (Astro) (all D). A: dose-response (EC50 ≈ 0.2 μmol/l) of s-LPA (s-LPA; 1 μmol/l at different times of exposure). B: response of pCMVEC to various lipids related to s-LPA (1 μmol/l for all lipids); effects of H2O2 (100 μmol/l) were also determined for comparison. Veh, vehicle; c-PA, cyclic phosphatidic acid (PA); o-PA, dioleyl-PA; o-PA, oleyl-PA; p-PA, palmitoyl-PA; o-LPC, oleyl-lysophosphatidylcholine; o-LPE, oleyl-lysophosphatidylethanolamine; IPF2, 15-F2t-isoprostane. D: cell specificity to s-LPA (1 μmol/l)-induced cytotoxicity at 24 h; all cells were unaffected by vehicle and are represented by a single bar regardless of cell type. E: s-LPA-induced endothelial cell death in the presence or absence of the LPA1 allosteric antagonist THG1603 (IC50 ≈ 60 μmol/l) or the Gαi inhibitor pertussis toxin (PTX; 25 ng/ml). Cell survival was quantified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Values are means ± SE of 3–5 experiments, each performed in triplicate. *P < 0.01 compared with control and/or vehicle.
(100 μmol/l) were taken before fixation and processing for electron microscopy, according to standard techniques (20).

Western blot analysis of activated phosphorylated p38 MAPK, phosphorylated JNK, and cleaved spectrin and caspase-3. pCMVEC were treated with s-LPA (10 μmol/l) for different durations in the presence or absence of THG1603 (100 μmol/l), suramin (100 μmol/l), NAC (2 mmol/l), and the NADPH oxidase inhibitors apocynin (500 μmol/l) and diphenyleneiodonium (DPI; 10 μmol/l; Biomol). Total cell lysates were prepared using conventional RIPA buffer, and protein content was determined using the Bradford method. Cell samples were solubilized in Laemmli buffer, resolved by SDS-PAGE (9%), transferred to polyvinylidene difluoride (PVDF) membranes, and blotted with the following antibodies: anti-JNK (polyclonal, 1:1,000; Cell Signaling), anti-phosphorylated-JNK (polyclonal, 1:1,000; Cell Signaling), anti-p38 MAPK (monoclonal, 1:250; Chemicon), anti-phosphorylated p38 MAPK (monoclonal, 1:1,000; Chemicon), anti-αII-spectrin (monoclonal, 1:1,000; Chemicon), and anti-caspase-3 (polyclonal, 1:200; Chemicon).

Fig. 2. Effects of s-LPA on calcein-AM and ethidium homodimer-1 (EthD-1) incorporation (live-dead assay) and DNA fragmentation (TUNEL) in pCMVECs. A: cells were exposed for 24 h to vehicle control (Ctl), s-LPA (1 and 10 μmol/l), or a hypsometric shock (Osm) that consists of culture medium diluted with an equal volume of distilled sterile H2O, as a positive control for oncosis (43), and the live-dead assay was performed. Calcein-AM (green) and EthD-1 (red) are respective markers of live and oncotic cells. Note the intense green staining of cells treated with vehicle (top image) and the decreased number of cells, diminished intensity of green staining, and increased incorporation of EthD-1 (red, arrows) in s-LPA-treated cells (bottom image). B: DNA fragmentation assessed by TUNEL (green, arrows). Cells were treated for 24 h with vehicle (Ctl) or s-LPA (1 μmol/l), processed for TUNEL, and counterstained using propidium iodide (red). Actinomycin D (0.5 μmol/l) treatment served as a positive control for DNA fragmentation. Values are means ± SE of 3 preparations. *P < 0.05 compared with control.
Western blot analysis of iNOS, pCMVEC were treated for 5 h with vehicle (control) or s-LPA (10 μmol/l) in the presence or absence of NAC, SB-203580, and SP-600125. Crude cytosolic fractions were prepared as described previously (20). With standard procedures, immobilized proteins were blotted with antibodies against iNOS (monoclonal, 1:200; Transduction Laboratory), and protein expression was compared with that of control (vehicle-treated cells) after normalization to β-actin (monoclonal, 1:40,000; Novus Biological) using ImagePro Plus 4.1 (Media Cybernet, Silver Spring, MD).

Detection of protein nitration, protein S-nitrosylation, and measurement of 15-F_2t-IsoP and hydroperoxides. Tyrosine nitration of proteins, a marker for nitrative stress, was determined on pCMVEC treated for 5 and 24 h with vehicle, s-LPA (10 μmol/l), NAC (2 mmol/l), SP600125 (1 μmol/l), and SB-203580 (5 μmol/l) or i-NNA (1 mmol/l). Ex vivo monitoring of vascular degeneration was visualized by live-staining the endothelium using FITC-conjugated lectin (Griffonia simplicifolia; Sigma), and vascular density was quantified using a software program (ImagePro Plus 4.1). Control explants did not show signs of vascular degeneration for up to 7 days of culture.

Determination of vascular density in retinas of eyes injected with LPA. In addition to brain, microvascular toxicity of LPA was assessed on another neural tissue, the retina, to which administration of compounds in vivo is less invasive and more easily performed than in the brain. Newborn rat pups were anesthetized with isoflurane and injected intravitreally using glass capillaries (~60 gauge) on postnatal days 1 and 3 with 3–5 μl of vehicle (saline), s-LPA (~1–10 μmol/l) alone, or s-LPA with THG1603 (~100 μmol/l), NAC (~2 mmol/l), SP600125 (~1 μmol/l), and SB-203580 (~5 μmol/l), or i-NNA (~1 mmol/l) [final intraocular concentrations, based on estimated eye volume (57)]. Pups were killed at postnatal day 6, and eyes were enucleated and fixed in 4% formaldehyde. Retinas were isolated and were cultured for 4 days in endothelial basal medium (Clonetics), without FBS and supplemented with growth factors (EBM bullet kit; Clonetics), containing vehicle (control), s-LPA (1 μmol/l), or s-LPA with THG1603 (100 μmol/l), NAC (2 mmol/l), SP600125 (1 μmol/l), and SB-203580 (5 μmol/l) or i-NNA (1 mmol/l). Measurement of reduced glutathione. Reduced glutathione (GSH) was measured in pCMVEC treated with vehicle (control) or s-LPA (10 μmol/l) for 24 h in the presence or absence of THG1603 and NAC. Cells were harvested in 2% metaphosphoric acid (in HPLC H_2O grade) for subsequent measurement of levels (6).

Measurement of reduced glutathione. Reduced glutathione (GSH) was measured in pCMVEC treated with vehicle (control) or s-LPA (10 μmol/l) for 24 h in the presence or absence of THG1603 and NAC. Cells were harvested in 2% metaphosphoric acid (in HPLC H_2O grade) for subsequent measurement of levels (6).
their microvasculature stained using TRITC-conjugated lectin. Quantification of vascular density was performed on retinal flat mounts (57).

Statistical analysis. Data were analyzed using one-way ANOVA followed by post hoc Dunnett’s test for comparison among means. Values are presented as means ± SE. Statistical significance was set at P < 0.05.

RESULTS

Effects of LPA on endothelial cell survival. s-LPA caused a concentration-dependent death of pCMVEC (EC50 ≈ 0.2 μmol/l) (Fig. 1A). Cell survival was markedly and comparably diminished 5 and 24 h after exposure to s-LPA (Fig. 1B). Moreover, a 10-min duration of exposure to s-LPA (1 μmol/l) was sufficient to trigger pCMVEC death detected 24 h later (14.2 ± 1.6% cell death, P < 0.01). All LPA species tested (s-, α-, and p-LPA) were equivalently cytotoxic; the naturally occurring cyclic PA, which exhibits partial LPA antagonistic activity (49), was ineffective, as expected (Fig. 1C). As well, closely related phospholipids and lysophospholipids did not affect endothelial cell survival (Fig. 1C). s-LPA was as effective as if not superior to other previously described cytotoxic lipid mediators, namely, thromboxane A2 (5, 8, 55), platelet-activating factor (4), the isoprostane 15-F2t-Isop (8), and H2O2 (Fig. 1C). Endothelial cells from different vascular beds, species, and age were also sensitive to s-LPA; astrocytes were resistant (Fig. 1D).

s-LPA induced endothelial cell death was prevented by the LPA1 allosteric antagonist THG1603 (IC50 ≈ 60 μmol/l) (Fig. 1E) as well as by the nonselective G protein blocker suramin (11, 65) (cell survival after exposure to s-LPA alone for 24 h was 60.2 ± 2.1% and was augmented to 82.3 ± 3.6% in suramin-pretreated s-LPA-exposed cells, P < 0.01); PTX did not affect the cytotoxicity of s-LPA (Fig. 1E).
Nature of s-LPA-induced endothelial cell death. The biochemical live-dead assay (Molecular Probes) corroborated the MTT data obtained as cell density diminished in presence of s-LPA (Fig. 2A). Furthermore, in pCMVECs still attached after s-LPA treatment, incorporation of calcein-AM (a marker for live cells) decreased, whereas staining with EthD-1 (a marker for oncotic cells) increased (Fig. 2A). Also, endothelial cells treated with s-LPA did not show signs of classic apoptosis such as cell rounding, nuclear condensation, and apoptotic bodies (Fig. 3, B, B', and B') and did not exhibit TUNEL positivity (Fig. 2B) or cleaved fragments of spectrin and caspase-3 (data not shown). s-LPA-treated cells resembled H2O2-treated cells as indicated by the overall morphology and ultrastructural features (Fig. 3, B, B', B'', C, C', and C''). Numerous vacuoles were present in s-LPA- and H2O2-treated cells but not in control cells (Fig. 3, A', A'', B', B'', C', C'' and insets); these
Effects of inhibitors of major oxidative and nitrosative stress-generating systems on s-LPA-induced cell death. s-LPA treatment significantly decreased endothelial intracellular GSH levels (Table 1). In an attempt to identify the source and nature of ROS involved, we screened numerous antioxidants on endothelial cell death. The majority of antioxidants were ineffective at preventing s-LPA-induced cell death, with the exception of NAC (Fig. 4A); NAC renormalized GSH levels (Table 1). The specific iNOS inhibitor l-NNA also significantly attenuated LPA-induced cell death (Fig. 4A). A major source of oxidant, NADPH oxidase, seemed to partake in LPA-induced cell death; its inhibitor apocynin (50 μmol/l, corresponding to IC50) diminished LPA-triggered cytotoxicity (cell survival: 59.5 ± 2.6% with s-LPA (1 μmol/l) vs. 72.0 ± 1.7% with apocynin pretreatment, P < 0.01). Inhibitors of COX, 5-lipoxygenase, phospholipase A2, and cytchrome P-450 were ineffective (Fig. 4A).

Indexes of oxidant stress, notably isoprostanes (5.9 ± 1.9 and 8.0 ± 2.3 pg of 15-F2t-IsoP/mg protein at 24 h in control and s-LPA-treated cells, respectively), hydroperoxides (not detected in control and s-LPA-treated cells at 24 h), and protein tyrosine nitration (nonsignificant 1.3-fold increase in nitrotyrosine in s-LPA-treated cells compared with control cells at 24 h) were minimally affected by LPA. On the other hand, protein nitrosylation was markedly (12-fold) augmented (Fig. 4B); this effect was inhibited by NAC (not shown). Concordantly, s-LPA induced within 5 h a robust expression of iNOS (Fig. 4C) and an associated increase in nitrite production [control, 10.1 ± 0.7 nmol nitrite/mg protein ± 30 min−1; s-LPA (1 μmol/l), 25.4 ± 4.3 P < 0.05]. Inhibitors of the p38/JNK pathways (SB-203580 and SP-600125) significantly diminished LPA-evoked iNOS expression (Fig. 4C). These pathways were rapidly activated (phosphorylated) in response to s-LPA (Fig. 4D). Correspondingly, the combined effects of p38 and JNK inhibitors blocked LPA-induced cell death (Fig. 4E).

Neuromicrovascular degeneration by s-LPA. Endothelial cytotoxicity of LPA was corroborated ex vivo and in vivo on rat pup brain explants and retinas, respectively. Brain and retinas exposed to s-LPA exhibited diminished microvasculature; these effects were prevented by THG1603, NAC, l-NNA, and combined SP-600125 and SB-203580 (Fig. 5).

DISCUSSION

The present study reveals that physiologically encountered concentrations of LPA (EC50 = 0.2 μmol/l) (64, 68) promote endothelial cell death, resulting in cerebral and retinal microvascular rarefaction. This effect associated with protein nitrosylation depends on the modulation of the cell redox state toward a less reducing environment and interrelated induction of iNOS and is depicted in a model presented in Fig. 6. The findings disclose novel properties of LPA, specifically regarding endothelial cytotoxicity, by involving nitrosylation, which also has yet to be described for LPA.

Although the adverse effects of LPA on cell viability appear to be an exception to its commonly known proliferative/antiapoptotic properties seen in various cell types (70), the current observation of cytocidal effects of LPA is compatible with emerging findings, highlighting its Janus faces in inflammatory states. For instance, toxic effects of LPA have been reported in T cells and neurons, and the latter have been proposed to play a role in brain injury (26, 27, 41, 60). As demonstrated in the current study, LPA also may partake in brain injury by causing endothelial cell demise and microvascular degeneration.

Several lines of evidence support an active participation of the G protein-coupled receptor LPA1 in LPA-mediated cytocidal responses in endothelial cells. 1) LPA1 is abundant in pCMVEC (20, 21), and HUVECs, which only express LPA1 (44), were susceptible to s-LPA (Fig. 1D). 2) LPA1-mediated responses occur independently of LPA’s degree of fatty acid saturation (3, 20), consistent with cytotoxic results obtained using various LPAs (Fig. 1C). 3) Effects of LPA are G protein dependent given that they were inhibited by suramin. 4) The specific LPA1 peptide antagonist THG1603 (21) prevented s-LPA-induced cell death in vitro (Fig. 1E) as well as ex vivo and in vivo (Fig. 5).

The s-LPA-induced cell death did not seem to proceed via classic apoptosis as revealed by an absence of TUNEL, cleaved caspase-3 and spectrin, chromatin condensation, and cellular blebbing (Figs. 2 and 3). The cell death process appeared more related to oncosis, since cell swelling and increased incorporation of EthD-1 were observed (Figs. 2 and 3). Nevertheless, numerous intermediate pathways of cell death have been described (37, 46, 59) spanning a spectrum between apoptosis and oncosis. Of relevance are the vacuolized organelles (e.g., endoplasmic reticulum) observed in electron micrographs (Fig. 3); these are indicative of ongoing autophagy (38, 42), a process also referred to as type II programmed cell death, which is activated in response to oxidant stress and found to occur in multiple brain injuries, including cerebral ischemia (17, 71).

LPA has been suggested to signal through generation of ROS (13, 30, 34, 58); these in turn are key effectors in cell death (26, 60). A number of observations point to an LPA-induced oxidant stress in causing endothelial cytotoxicity. LPA

![Fig. 6. Model depicting the mechanism by which s-LPA exerts its cytotoxic actions on neuromicrovascular endothelium. s-LPA via its LPA1 receptor activates NADPH oxidase (28) as well as the p38 MAPK and JNK pathways, which are themselves modulated by the redox environment. Activation of these enzymes causes an increase in iNOS expression and NO formation, as well as a decrease in GSH, which also may be partly attributed to its nitrosylation. These redox changes favor protein nitrosylation and, in turn, endothelial cell death and microvascular rarefaction. EC, endothelial cell; P, phosphorylation/activation of the kinases.](http://ajpregu.physiology.org/article-pdf/292/3/221/308628/10.1152-ajpregu.00036.2007)
reduced GSH levels (Table 1) and caused an increase in iNOS (Fig. 4), nitrites, and nitrosylation (Fig. 4), yet this oxidant stress was not overwhelming because other indexes of oxidation (hydroperoxides, isoprostanes, and protein nitration) were not augmented. The cell death was prevented by NOS blockers and by renormalization of glutathione with its precursor NAC (Figs. 4 and 5). Also, protection against LPA-induced cytotoxicity was observed with inhibitors of the major superoxide generator NADPH oxidase, which reestablished a redox balance (2, 62), inferring a significant role for this enzyme in LPA-induced redox changes (Table 1). This also suggests a coupling between LPA1 and NADPH oxidase, which has been reported to involve the small GTPases Rac1 and Rac2 (28) through a G_{iso}-independent pathway (61), as we have observed (Fig. 1E, PTX insensitive). Interestingly, redox-sensitive p38- and JNK-dependent (28) iNOS expression was also presently found to be modulated by inhibitor of NADPH oxidase (Fig. 4). Collectively, these data suggest that LPA seems to exert its cytotoxic effects through modulation of the cell redox environment (decline in GSH levels, induction of iNOS, and consequent protein nitrosylation). The decrease in the reductive state by LPA is likely to partake in the increased susceptibility of endothelial cells, which are more vulnerable to oxidant stress than other vascular/perivascular cells (39); indeed, astrocytes were resistant to LPA, consistent with their ability to cope with oxidant stress (67).

S-nitrosylation is increasingly observed to be important in cell signaling (19). Nitrosylation of proteins occurs when a cysteine thiol reacts with NO in the presence of an electron acceptor to produce S-NO. Conversely, when the redox environment is shifted toward a reducing environment, S-nitrosothiols are denitrosylated (23). Nitrosylation reaction also applies to GSH to form GSNO. Accordingly, a decrease in GSH levels in response to LPA may be contributed by nitrosylation of GSH per se; indeed, a tendency toward renormalization of GSH levels was observed by inhibitors of the p38/JNK-iNOS pathway. Numerous reports indicate that S-nitrosylation protects against apoptosis by maintaining caspases inactive (48). These findings are consistent with ours, wherein “classic” apoptosis morphology and associated caspase-3 activation were not observed. On the other hand, S-nitrosylation also can disrupt activity of other vital proteins (for instance, that of mitochondria) and induce cell death processes intermediary of apoptosis and oncosis (36) in line with the present study (Figs. 2 and 3).

In summary, we have identified a previously undescribed relevant property for LPA in inducing endothelial cell death leading to neuromicrovascular rarefaction, which depends on LPA1-mediated modulation of the cell redox state toward a less reducing environment. These cytotoxic actions of s-LPA are particularly pertinent in HI brain injuries, including periventricular leukomalacia. In addition to its neural vasoconstrictor actions (64) and increased expression of adhesion molecules (53, 56), the endothelial cytotoxicity conveyed by LPA broadens its purported pathological role in cerebral ischemia by causing microvascular degeneration. By modulating the redox environment of the endothelium, s-LPA also may contribute to the establishment of an environment favorable for other cytoxic mediators present during HI injury, such as cytokines (33, 66).

ACKNOWLEDGMENTS

We thank Hendrika Fernandez for technical assistance.

GRANTS

This study was supported in part by grants from the Canadian Institute of Health Research (CIHR) and the Heart and Stroke Foundation of Quebec. S. Chemtob is recipient of a Canada Research Chair. S. Brault is a recipient of studentships from the CIHR. F. Gobeil is a recipient of a scholarship from the Fonds de la Recherche en Sante du Quebec.

REFERENCES

