AT₁ and glutamatergic receptors in paraventricular nucleus support blood pressure during water deprivation

Korrina L. Freeman and Virginia L. Brooks

Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon

Submitted 31 August 2006; accepted in final form 20 December 2006

Freeman KL, Brooks VL. AT₁ and glutamatergic receptors in paraventricular nucleus support blood pressure during water deprivation. Am J Physiol Regul Integr Comp Physiol 292: R1675–R1682, 2007. First published December 21, 2006; doi:10.1152/ajpregu.00623.2006.—Water deprivation activates sympathoexcitatory neurons in the paraventricular nucleus (PVN); however, the neurotransmitters that mediate this activation are unknown. To test the hypothesis that AT₁ and glutamate are involved, effects on blood pressure (BP) of bilateral PVN microinjections of ANG II type 1 receptor (AT₁R) antagonists, candesartan and valsartan, or the ionotropic glutamate receptor antagonist, kynurenate, were determined in urethane-anesthetized water-deprived and water-replete male rats. Because PVN may activate sympathetic nerves via the rostral ventrolateral medulla (RVLM) and because PVN disinhibition increases sympathetic activity in part via increased release of AT₁R in the RVLM, candesartan was also bilaterally microinjected into the RVLM. Total blockade of the PVN with bilateral microinjections of muscimol, a GABAₐ agonist, decreased BP more (P < 0.05) in water-deprived (−29 ± 8 mmHg) than in water-replete (−7 ± 2 mmHg) rats, verifying that the PVN is required for BP maintenance during water deprivation. PVN candesartan slowly lowered BP by 7 ± 1 mmHg (P < 0.05). In water-replete rats, however, candesartan did not alter BP (1 ± 1 mmHg). Valsartan also produced a slowly developing decrease in arterial pressure (−6 ± 1 mmHg; P < 0.05) in water-deprived but not in water-replete (−1 ± 1 mmHg) rats. In water-deprived rats, PVN kynurenate rapidly decreased BP (−19 ± 3 mmHg), and the response was greater (P < 0.05) than in water-replete rats (−4 ± 1 mmHg). Finally, as in PVN, candesartan in RVLM slowly decreased BP in water-deprived (−8 ± 1 mmHg; P < 0.05) but not in water-replete (−3 ± 1 mmHg) rats. These data suggest that activation of AT₁ and glutamate receptors in PVN, as well as of AT₁R in RVLM, contributes to BP maintenance during water deprivation.

angiotensin II; rostral ventrolateral medulla; candesartan; valsartan; glutamate

Considerable indirect evidence implicates ANG II or a related peptide. First, water deprivation increases circulating ANG II levels, and increased binding of ANG II to type 1 receptors (AT₁R) in circumventricular organs, such as the subfornical organ, increases the release and activity of an ANG II-like peptide in PVN (for a review, see Ref. 17). Second, both water deprivation and increases in osmolality trigger release of ANG II in PVN (21, 34). Third, administration of an AT₁R antagonist in PVN attenuates the increases in BP and renal sympathetic nerve activity in response to intracarotid injections of hypertonic saline (11). Therefore, one purpose of these experiments was to test the hypothesis that stimulation of AT₁R contributes to PVN activation by determining whether microinjection of AT₁R antagonists into PVN decreases BP more in water-deprived than in water-replete rats.

Another excitatory neurotransmitter that may participate in the increased activity of PVN sympathoexcitatory neurons during water deprivation is glutamate. Indeed, glutamate is involved in hypertonicity-induced activation of magnocellular neurons (5, 14, 40). To test this hypothesis, we aimed to determine whether PVN bilateral microinjection of the non-specific ionotropic excitatory amino acid antagonist kynurenate decreases BP more in water-deprived than in water-replete rats.

PVN may activate the sympathetic nervous system via a pathway that includes the RVLM. As described above, PVN neurons that project to the RVLM are activated during water deprivation (41, 42), and the vast majority of these neurons are glutamatergic (44). Moreover, previous work indicates that the RVLM is tonically excited by glutamatergic inputs during water deprivation (6, 7). However, the role of other neurotransmitters has not been previously investigated. Activation of AT₁R in the RVLM has been shown to contribute to hypertension in spontaneously hypertensive rats (1, 23), Dahl salt-sensitive rats (22), and transgenic TGR(mREN2)27 rats (18), as well as to maintenance of normal BP in rats on a low-salt diet (15). Therefore, a final purpose of these experiments was to test the hypothesis that activation of AT₁R in RVLM underlies maintenance of basal BP during water deprivation by determining whether bilateral AT₁R blockade of RVLM decreases BP more in water-deprived than in water-replete rats.

METHODS

Animals. We used male Sprague-Dawley rats (Sasco, Wilmington, MA) weighing ~275–375 g for all experiments. All rats were housed in a room with a 12:12-h light-dark cycle for a minimum of 5 days before experimentation. Rats had free access to food (LabDiet 5001, 0363-6119/07 $8.00 Copyright © 2007 the American Physiological Society R1675

http://www.ajpregu.org

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
Richmond, IN). Water-deprived rats were housed singly for 48 h without water; water-replete rats were housed in groups of one to three and were allowed free access to deionized water. All procedures were conducted in accordance with the NIH “Guide for the Care and Use of Laboratory Animals” and were approved by the Institutional (Oregon Health & Science University) Animal Care and Use Committee.

Surgery. Throughout the surgery and experiment, body temperature was maintained at 37 ± 1°C, using a rectal thermometer, heat lamp, and heating pad. Anesthesia was induced with 5% isoflurane in 100% oxygen. A trachea tube was first inserted so that the animals could be artificially ventilated, and a surgical plane of anesthesia was maintained with 2% isoflurane in 100% oxygen.

Femoral arterial and venous catheters were implanted for arterial pressure measurements and infusions, respectively. Rats were then positioned in the stereotaxic device (David Kopf, Tujunga, CA). For PVN microinjections, a midline incision was made on the top of the skull, which was cleared of tissue. An opening, spanning the midline ± 3 mm, was burred through the skull caudal to bregma. For RVLM microinjections, a midline incision was made on the back of the head to allow exposure of the dorsal surface of the medulla. The atlanto-occipital membrane was then removed via a limited craniotomy. After completion of all surgical manipulations, a blood atlanto-occipital membrane was then removed via a limited craniotomy. After completion of all surgical manipulations, a blood

An intravenous infusion of urethane (1.2 g/kg in 1 ml saline) was then administered free access to deionized water. All procedures were conducted in accordance with the NIH “Guide for the Care and Use of Laboratory Animals” and were approved by the Institutional (Oregon Health & Science University) Animal Care and Use Committee.

Surgery. Throughout the surgery and experiment, body temperature was maintained at 37 ± 1°C, using a rectal thermometer, heat lamp, and heating pad. Anesthesia was induced with 5% isoflurane in 100% oxygen. A trachea tube was first inserted so that the animals could be artificially ventilated, and a surgical plane of anesthesia was maintained with 2% isoflurane in 100% oxygen.

Femoral arterial and venous catheters were implanted for arterial pressure measurements and infusions, respectively. Rats were then positioned in the stereotaxic device (David Kopf, Tujunga, CA). For PVN microinjections, a midline incision was made on the top of the skull, which was cleared of tissue. An opening, spanning the midline ± 3 mm, was burred through the skull caudal to bregma. For RVLM microinjections, a midline incision was made on the back of the head to allow exposure of the dorsal surface of the medulla. The atlanto-occipital membrane was then removed via a limited craniotomy. After completion of all surgical manipulations, a blood atlanto-occipital membrane was then removed via a limited craniotomy. After completion of all surgical manipulations, a blood
Table 1. Effect of water deprivation on basal blood and hemodynamic values

<table>
<thead>
<tr>
<th></th>
<th>Water-Deprived Rats</th>
<th>Water-Replete Rats</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>37–44</td>
<td>14–17</td>
</tr>
<tr>
<td>Plasma sodium concentration, meq/l</td>
<td>143.2±0.4*</td>
<td>138.7±0.3</td>
</tr>
<tr>
<td>Plasma chloride concentration, meq/l</td>
<td>109.6±0.2*</td>
<td>104.9±0.5</td>
</tr>
<tr>
<td>Plasma osmolality, mosmol/kgH2O</td>
<td>312.7±0.5*</td>
<td>303.5±0.5</td>
</tr>
<tr>
<td>Hematocrit, %</td>
<td>49.2±0.4*</td>
<td>43.3±0.5</td>
</tr>
<tr>
<td>Plasma protein concentration, g/dl</td>
<td>6.2±0.1*</td>
<td>5.1±0.1</td>
</tr>
<tr>
<td>Mean arterial pressure, mmHg</td>
<td>115±2</td>
<td>111±3</td>
</tr>
<tr>
<td>Heart rate, beats/min</td>
<td>342±7</td>
<td>325±9</td>
</tr>
</tbody>
</table>

Values are means ± SE. *P < 0.05 compared with water-replete rats.

Nevertheless, because of the rather modest depressor response, a higher dose of candesartan (1 nmol) was also microinjected in a separate group of water-deprived rats. Again, a slow fall in pressure was observed; however, the maximal depressor response did not differ from that after injection of 100 pmol, although the latency to reach the nadir was increased (P < 0.05; see legend to Fig. 2). Nevertheless, it was interesting to note that the response was quite variable (−3 to −17 mmHg) and that the largest falls in pressure were observed when injections were centered in the most caudal regions of PVN (Fig. 2). As shown in the representative experiment (Fig. 2), PVN microinjection of candesartan was often accompanied by a small increase in heart rate; however, this effect was not significant (data not shown; P = 0.09).

To establish the specificity of the depressor actions of candesartan at AT1R, another nonpeptide AT1R antagonist, valsartan, was also microinjected bilaterally into the PVN. As with candesartan, a slowly developing depressor response was observed in water-deprived rats that exceeded the response observed in water-replete rats (Fig. 3). Again, heart rate was not significantly altered (data not shown). Collectively, these data suggest that an endogenous ANG II-like peptide acting at AT1R tonically drives PVN pressor neurons during water deprivation.

Role of tonic PVN glutamatergic input in BP maintenance during water deprivation. To investigate the role of PVN ionotropic glutamatergic receptors, kynurenate (7.2 nmol) was microinjected bilaterally in water-deprived and water-replete rats. Although kynurenate administration had little effect in water-replete rats, in water-deprived rats it elicited a prompt and profound decrease in BP and heart rate (Fig. 4). Therefore, water deprivation-induced PVN activation appears to also depend on increased glutamatergic drive of PVN pressor neurons.
Role of tonic RVLM AT1R activation in BP maintenance during water deprivation. As in PVN, bilateral microinjection of candesartan (100 pmol) into RVLM produced a slowly developing decrease in BP in water-deprived rats that was greater than that observed in water-replete rats (Fig. 5). Consistent or significant changes in heart rate were not observed (data not shown). These results suggest that AT1R activation in RVLM also contributes to BP maintenance during water deprivation.

DISCUSSION

PVN pressor neurons are activated during water deprivation; however, the neurotransmitters that drive this activation have
not been identified. The major new findings of this study are that bilateral PVN microinjection of AT1R antagonists and the ionotropic glutamate receptor antagonist, kynurenate, and bilateral microinjection of candesartan in RVLM decrease arterial BP in water-deprived but not water-replete rats. These results suggest for the first time that PVN AT1 and glutamatergic receptors are tonically excited during water deprivation and that this excitation allows BP maintenance in the face of volume depletion. We further conclude that RVLM AT1R activation is also required for basal BP support.

As previously reported (42, 43), we observed that acute inhibition of PVN after microinjection of muscimol rapidly decreased arterial BP in water-deprived rats. The rapid nature of the depressor response, as well as previous simultaneous measurements of renal and lumbar sympathetic activity (42, 43), indicates that the fall in pressure is largely mediated by decreases in sympathetic activity. The mechanisms for activation of PVN sympathoexcitatory neurons by water deprivation have not been directly investigated, but significant previous research indirectly implicates a role for increased stimulation of AT1R. In support of this hypothesis, we found that PVN administration of two AT1R antagonists, candesartan and valsartan, significantly decreased arterial BP in water-deprived rats. In contrast, AT1R blockade had little effect in water-replete animals, in agreement with previous reports (12, 49).

Interestingly, the depressor response was slowly developing, reaching its nadir only after 15–20 min. This slow response is not specific to PVN; a similar gradual BP decline has been observed.

![Figure 4](image1)

Fig. 4. Effect of bilateral microinjections of kynurenate in PVN on MAP (left) and heart rate (HR; right) in water-replete and water-deprived rats. A: means ± SE of MAP and HR responses. Control MAP values (in mmHg) were 112 ± 6 (water replete; open bars; n = 5), 100 ± 9 (water deprived; black bars; n = 6), and 94 ± 19 (water deprived, kynurenate injections outside of PVN; hatched bars; n = 3). Control HR values (in beats/min) were 351 ± 7 (water replete), 435 ± 16 (water deprived), and 387 ± 32 (water deprived, kynurenate injections outside of PVN). Latencies to MAP nadir (in min) were 2.4 ± 0.5 (water replete), 5.7 ± 2.3 (water deprived), and 2.8 ± 1.1 (water deprived, kynurenate injections outside of PVN). Injections outside of PVN included one placed 2.2 mm lateral of PVN and two in which histology revealed injection sites that were >0.3 mm caudal of PVN. *P < 0.05 compared with water replete; †P < 0.05 compared with injections outside of PVN.

![Figure 5](image2)

Fig. 5. Effect of bilateral microinjections of candesartan in rostral ventrolateral medulla (RVLM) on MAP in water-replete and water-deprived rats. A: means ± SE of MAP responses. Control MAP values (in mmHg) were 116 ± 6 (water replete; open bar; n = 4) and 95 ± 11 (water deprived; black bar; n = 7). Latencies to MAP nadir (in min) were 17.8 ± 1.5 (water replete) and 17.0 ± 1.6 (water deprived). *P < 0.05 compared with water replete. B: coronal section depicting RVLM injection sites of candesartan in water-replete (○) and water-deprived (●) rats. Section is −11.8 mm from bregma; injections were within ±0.2 mm from this section. C: representative tracings of bilateral microinjection of candesartan into PVN of a water-deprived rat. Arrows indicate times of microinjection of candesartan into each side of the brain.
reported after AT1R blockade in RVLM (1, 22, 23). The slow response is consistent with electrophysiological studies showing that the reversal of ANG II-induced activation of PVN sympathoexcitatory neurons following washout of the peptide requires several minutes (9, 30). Alternatively, the slow time course could be explained by PVN AT1R blockade decreasing vasopressin secretion and its subsequent clearance from plasma, due to reversal of the known stimulatory effect of ANG II in PVN on vasopressin release (39, 48). However, our finding that the greatest depressor responses to candesartan were observed in the more caudal regions of PVN, which house sympathoexcitatory neurons that project to the spinal cord and/or to RVLM, but contain few neurohypophysial magnocellular vasopressin neurons (20, 35), argues against this possibility.

Recent studies provide a mechanistic framework by which AT1R activation excites PVN neurons. AT1R have been described throughout the PVN (19, 28, 32, 33) but are notably absent on vasopressin magnocellular neurons (28). Moreover, immunocytochemical visualization of AT1R in PVN failed to detect receptors on neurons that project to RVLM or spinal cord (33). Therefore, the action of ANG II in PVN to stimulate parvocellular sympathoexcitatory (9, 30) or magnocellular vasopressinergic neurons may be, in part, indirect. This idea is supported by the recent studies of Latchford and Ferguson (27), which suggested that ANG II stimulates PVN magnocellular neurons via a glutamatergic interneuron. Similarly, Li and coworkers (29, 30) propose that ANG II-induced excitation of PVN sympathoexcitatory neurons is via inhibition of local GABAergic synaptic activity but is independent of glutamatergic input. On the other hand, Cato and Toney (9) provided support for a parallel direct or indirect excitatory effect of ANG II through AT1R-mediated activation of a mixed cation current. Collectively, therefore, during water deprivation, an endogenous ANG II-like peptide may excite PVN sympathoexcitatory neurons indirectly by inhibiting GABA release, but also possibly by direct depolarization (Fig. 6).

Another key finding of the present study was that blockade of ionotrophic glutamate receptors produced rapid, large decreases in arterial BP and heart rate in water-deprived but not water-replete rats. The brisk time course indicates that the fall in pressure is secondary to decreases in sympathetic activity. Therefore, these data suggest for the first time that tonic activation of PVN sympathoexcitatory neurons, in particular during water deprivation, also includes increased excitation of glutamate receptors (Fig. 6). Interestingly, the sum of responses to PVN AT1R and glutamatergic blockade was equivalent to that of complete blockade with muscimol. If ANG II acts distinctly from glutamatergic inputs (29, 30), then this result would suggest that excitation of AT1 and glutamatergic receptors can completely explain the sustained activation of PVN observed during water deprivation.

The present experiments do not reveal whether the tonically increased drive of PVN AT1 and glutamate receptors is secondary to increased release of these neurotransmitters or to increases in receptor expression or functional efficacy. Moreover, the modalities that mediate the increased activation of PVN AT1R and glutamate receptors were not investigated. Water deprivation, at least in conscious rats, increases arterial pressure (4, 37, 38); therefore, it is unlikely that arterial baroreceptor unloading is involved. Because it is presently unclear whether volume-sensing cardiac stretch receptors are active at rest or whether their unloading leads to sympathoexcitation (36), a potential role for cardiac receptors remains uncertain. On the other hand, water deprivation increases circulating levels of ANG II and osmolality, each of which could contribute. It is well established that ANG II activates neurons in circumventricular organs, such as the subfornical organ, which through monosynaptic or polysynaptic (e.g., via the median preoptic nucleus (MnPO)) pathways. Subsequently, sympathoexcitatory activity increases, mediated by direct projections to the spinal cord (IML) and also indirectly via synapses in the RVLM. Details of proposed synaptic mechanisms in PVN (dashed box) are expanded in bottom dotted box. Bottom: increased OSM/ANG II excites PVN sympathoexcitatory neurons in part via ANG II type 1 receptors (AT1R). A portion of the AT1R activation may be indirect, via local inhibition of GABA release. AT1R on PVN sympathoexcitatory neurons may also be directly excited. Finally, a parallel direct excitation via glutamate receptors is also proposed.
very recently reported that PVN microinjection of kynurenic acid reverses the increase in lumbar sympathetic nerve activity triggered by an acute increase in osmolality. Finally, acute and chronic increases in osmolality have been shown to increase AT1R activity in PVN (11, 21, 34). Therefore, we speculate that the increase in osmolality underlies at least in part the activation of AT1 and glutamate receptors observed during water deprivation. If so, and if ANG II acts independently of glutamate as suggested by in vitro electrophysiological studies (29, 30), then osmoreceptor-mediated activation of PVN sympathoexcitatory neurons may be conveyed via two separate parallel pathways, which include AT1 and glutamate receptors, respectively (Fig. 6). In support of this scenario, Bains and Ferguson (3) noted that PVN neurotransmission after electrical stimulation of subfornical organ-PVN-spinal cord pathways was mediated by both a slowly acting ANG II-like peptide and a rapid (presumably glutamatergic) chemical messenger.

In addition to increased activity of AT1R in PVN, the present study also documented that water deprivation induces parallel activation of AT1R in RVLM, similarly to that reported in rat models of hypertension and sodium deprivation (1, 15, 18, 22, 23). As in the PVN and as previously described in the RVLM (1, 22, 23), the depressor response was slowly developing. The slow nature of this response suggests that the rapid falls in arterial pressure after PVN administration of muscimol or kynurenate are not mediated by decreased drive of RVLM AT1R. In addition, as described above, ANG II excites PVN sympathoexcitatory neurons, at least in part, by attenuating GABA release (29, 30), and disinhibition of PVN by microinjection of the GABA receptor antagonist bicuculline excites RVLM pressor neurons by activation of AT1R in RVLM (46). Therefore, increased AT1R activity in PVN may be linked to the increased AT1R activation in RVLM, similarly to the previously proposed linkage between ANG II activation of the subfornical organ and the release of ANG II-like peptides in PVN (17). Indirect support of this idea is that the magnitude of the depressor responses to AT1R blockade in PVN and RVLM was similar to that shown in the present study. Nevertheless, future experiments are required to test this hypothesis.

In summary, although significant previous work indicated that acute increases in systemic osmolality and/or ANG II activate PVN pressor neurons via AT1 and glutamate receptors, the present results demonstrate that this rapid activation can be sustained during water deprivation. We also show that RVLM AT1Rs are required for BP maintenance in this hypovolemic state, as in sodium deprivation (16), in parallel with tonic excitation of RVLM glutamate receptors (6, 7).

GRANTS

This work was supported in part by National Heart, Lung, and Blood Institute Grants HL-35872 and HL-70962 and a grant-in-aid from the American Heart Association.

REFERENCES

