Organum vasculosum laminae terminalis contributes to increased sympathetic nerve activity induced by central hyperosmolality

Peng Shi,1 Sean D. Stocker,2 and Glenn M. Toney1

1Department of Physiology, University of Texas Health Science Center, San Antonio, Texas; and 2Department of Physiology, University of Kentucky, Lexington, Kentucky

Submitted 5 March 2007; accepted in final form 25 September 2007

Over the past several years, studies have established that acute hyperosmotic stimulation of the brain increases sympathetic nerve activity (SNA) (3, 12, 15, 24, 29). Indeed, equal osmolar loads of hypertonic NaCl, mannitol, and sucrose have each been shown to increase renal sympathetic nerve activity (RSNA) and arterial blood pressure (ABP) was assessed in anesthetized rats. Solutions of graded NaCl concentration (150, 375, and 750 mM) were injected (150 μl) into the forebrain vascular supply via an internal carotid artery (ICA). Time-control experiments (n = 6) established that ICA NaCl injections produced short-latency, transient increases of renal SNA (RSNA) and mean ABP (MAP) (P < 0.05–0.001). Responses were graded, highly reproducible, and unaltered by systemic blockade of vasopressin V1 receptors (n = 4). In subsequent studies, stimulus-triggered averaging of RSNA was used to accurately locate the OVLT. Involvement of OVLT in responses to ICA NaCl was assessed by recording RSNA and MAP responses before and 15 min after electrolytic lesion of the OVLT (n = 6). Before lesion, NaCl injections increased RSNA and MAP (P < 0.05–0.001), similar to time control experiments. After lesion, RSNA responses were significantly reduced (P < 0.05–0.001), but MAP responses were unaltered. To exclude a role for fibers of passage, the inhibitory GABA-A receptor agonist muscimol was microinjected into the OVLT (50 pmol in 50 nl) (n = 6). Before muscimol, hypertonic NaCl increased RSNA, lumbar SNA (LSNA), and MAP (P < 0.05–0.001). After muscimol, both RSNA and LSNA were significantly reduced in response to 375 and 750 mM NaCl (P < 0.05). MAP responses were again unaffected. Injections of vehicle (saline) into OVLT (n = 6) and muscimol lateral to OVLT (n = 5) each failed to alter responses to ICA NaCl. We conclude that OVLT neurons contribute to sympathoexcitation by central hyperosmolality.

sympathetic nerve discharge; body fluid homeostasis; blood pressure; osmolality

It should be emphasized that osmosensory mechanisms that initiate sympathoexcitatory responses to hyperosmolality have yet to be determined. What has been demonstrated, however, is that hyperosmotic stimulation of SNA involves activation of excitatory synaptic inputs to the hypothalamic paraventricular nucleus (PVN). Indeed, hyperosmolality-induced increases of SNA and ABP require activation of ANG II AT1 receptors (12) and ionotropic glutamate receptors (3) in the PVN, as well as recruitment of a vasopressinergic PVN-spinal pathway (3). The possibility that responses might involve intrinsic osmosensitivities of PVN neurons seems unlikely, given data suggesting that microinjection of hypertonic NaCl directly into the PVN has no effect on either LSNA or ABP (3). In contrast, osmosensitive inputs to the PVN appear essential, since transection of neural pathways immediately rostral to the PVN effectively eliminates hyperosmolality-induced increases of LSNA and ABP (3).

On the basis of available evidence, osmosensory neurons of the forebrain lamina terminalis were postulated to contribute to hyperosmolality-induced sympathetic activation. This concept is consistent with data showing that regions of the lamina terminalis known as circumventricular organs (CVOs) lack an effective blood-brain barrier (23, 29, 49). Consequently, bloodborne solutes can gain free access to the extracellular fluid surrounding CVO neurons (23, 28, 29). Here, we tested the hypothesis that sympathetic activation by central hyperosmolality critically depends on neuronal activity within the most ventral forebrain CVO, the organum vasculosum laminae terminalis (OVLT). Like other CVOs (e.g., subfornical organ, area postrema, median eminence), the OVLT is perfused by a dense network of fenestrated capillaries (28, 29) and contains neurons that exhibit intrinsic osmosensitivity (14). Indeed, OVLT neurons are already known to contribute significantly to hyperosmolality-induced thirst (27, 28, 44, 48), as well as pituitary release of vasopressin (30, 48) and oxytocin (44). Moreover, OVLT neurons innervate the PVN through monosynaptic (25, 36) and polysynaptic (21, 29, 49) pathways. These features make OVLT neurons excellent candidates for mediation of sympathoexcitation in response to acute central hyperosmotic stimulation.

In this study, ICA injections of graded concentrations of hypertonic NaCl were performed, and effects on RSNA, LSNA, and ABP were determined in anesthetized rats. Responses under control conditions were compared with those obtained after electrolytic lesion or chemical inhibition of OVLT neurons. Consistent with our previous findings (12), ...
ICA injections of graded concentrations of hypertonic NaCl elicited graded increases in RSNA, LSN, and ABP. Although ICA injections have the potential to broadly impact CNS structures, even those within the blood-brain barrier (28, 29, 48), we found that ablation of OVLT tissue and inhibition of OVLT neurons each significantly attenuated sympathoexcitatory responses to central hypertonic NaCl. These findings indicate that OVLT neurons play a prominent role in mediating sympathetic activation by central hyperosmolality.

METHODS

Animals

Experiments were performed on male Sprague-Dawley rats (n = 27) that weighed 350–450 g (Charles River Laboratories, Wilmington, MA). Rats were housed in a temperature-controlled room (22–23°C) with a 14:10-h light-dark cycle (lights on at 7 AM). Tap water and laboratory chow (Harlan Teklad LM-485, 0.3% NaCl) were available ad libitum. All surgical and experimental procedures were approved by the Institutional Animal Care and Use Committee of the University of Texas Health Science Center at San Antonio.

Surgical and Experimental Procedures

Rats were anesthetized with isoflurane (2–3% in oxygen) and catheters [polyethylene (PE)-50 tubing] were placed in a femoral artery and vein to record ABP and administer drugs, respectively. Heart rate (HR) was obtained from an ECG (lead I). To stimulate osmotic-sensitive regions of the forebrain, a nonoccluding flame-pulled PE-50 catheter was implanted into the left ICA and advanced 1.0–1.3 cm beyond the carotid sinus to avoid activation of arterial baroreceptors. Rats were then removed from isoflurane and anesthesia when their core temperature returned to 37.5°C with a water-circulating pad. In these studies, plasma osmolality (Posm) was measured from blood samples taken before and during systemic blockade of V1 receptors with “Manning compound” ([d(CH2)5Tyr2(ME)Arg8]-vasopressin, 10 µg/kg iv). This dose of Manning compound was similar to that used in previous studies (32, 33, 50) and was confirmed to effectively block pressor responses induced by vasopressin (20 ng iv).

OVLT lesion experiments. After mapping the location of the OVLT by stimulus-triggered RSNA averaging, rats were allowed to stabilize for 30 min before obtaining responses to the first series of ICA NaCl injections. As in time-control experiments, graded concentrations (150, 375, and 750 mM) of NaCl were injected (150 µl) via the ICA in random order and RSNA, HR, and ABP responses were recorded. The OVLT was then lesioned by passing direct current (500 µA, 45 s) through the same electrode used for OVLT mapping. To match the timing of control experiments, 15 min was allowed to elapse after OVLT lesion before performing a second series of identical ICA NaCl injections, again in a random sequence.

OVLT inhibition experiments. In separate experiments, effects of OVLT neuronal inhibition on responses to ICA hypertonic NaCl were tested. The location of OVLT was mapped as described above and control responses of RSNA, LSN, HR, and ABP to ICA injections (150 µl) of NaCl (150, 375, and 750 mM) were recorded. Fifteen minutes later the GABA-A receptor agonist muscimol (Sigma) was pressure ejected (50 pmol, 50 nl, 30 s) into the OVLT from a single-barreled glass micropipette (30–50 µm OD). After another 15 min had elapsed, responses to a second series of ICA NaCl injections were recorded. To verify that microinjections targeted the OVLT, Chicago Sky Blue dye (2% in saline) was microinjected (50 nl) at the same coordinates. Vehicle controls were performed by microinjecting normal saline. A separate group was used for anatomical control experiments in which muscimol injections were purposely delivered ~200 µm lateral to the mapped location of the OVLT.

Hematology measurements. In muscimol microinjection experiments, plasma osmolality (Posm), hematocrit (Hct), and plasma protein concentration (Pprotein) were measured from blood samples taken from the femoral vein prior to the first and second series of ICA NaCl injections. Hematocrit was determined from duplicate capillary tubes using standard methods. Blood samples (0.4 ml) were centrifuged (10,000 rpm, 3 min), and Posm was measured using a freezing point depression osmometer (Advanced Instruments, model 3320, Norwood, MA). Pprotein was determined by refractometry (VWR International, Buffalo Grove, IL).

Histology. At the end of lesion experiments, transcardiac perfusion was performed, first with 100 ml of chilled (4°C) 0.1 M PBS containing heparin (20 units/ml) followed by 300 ml of chilled PBS containing 4% paraformaldehyde. Brains were removed, postfix fixed overnight at 4°C in 4% paraformaldehyde, and cryoprotected (30% sucrose-PBS) for at least 2 days. Brains were then cut into 50-µm-
thick coronal sections, mounted on gelatin-coated slides, and coverslipped. Lesion sites were identified under bright-field microscopy.

For microinjection studies, brains were removed without transcardiac perfusion and postfixed for 24 h. Brains were cryoprotected, sectioned at 50 μm, mounted on slides, and coverslipped. The tissue distribution of microminjected dye was mapped as previously described (12, 13, 40, 41). Briefly, the outermost dye boundary in each OVLT section was drawn onto a digitized image of the stereotaxic plate corresponding to the same rostral-caudal plane. Sections from similar rostral-caudal levels from each animal were then overlaid, and the outermost dye distribution was drawn to indicate the farthest extent of injectate diffusion for the entire group.

Data analysis. Signals were acquired and analyzed using Spike2 software (ver. 4.21, Cambridge Electronic Design, Cambridge, UK). Baseline values of MAP, HR, RSNA, and LSNA were measured as the average of each variable over a 60-s period immediately before each treatment. Responses of all variables to central osmotic stimulation were measured as the average of a 5-s period centered on the peak response. RSNA and LSNA responses were expressed as a percentage of baseline after subtracting electrical noise from each signal. The latter was determined at the end of each experiment as the average of each voltage recorded 5 min after injection of the ganglionic blocker hexamethonium (30 mg/kg iv). MAP, HR, and SNAP responses to the first and second series of ICA NaCl injections were measured and compared in time-control, systemic vasopressin V1 receptor blockade, OVLT lesion, and vehicle/muscimol microinjection experiments. Data were compared using two-way ANOVA with a Bonferroni post hoc test for pairwise comparisons (Prism, ver. 4.0, GraphPad Software, San Diego, CA). Hematologic data obtained prior to the first and second series of ICA NaCl injections were compared using a paired t-test. P values less than 0.05 were considered significant.

RESULTS

Effects of ICA NaCl Injections on MAP, HR, and RSNA

In time-control experiments (n = 6), MAP and HR (Table 1), as well as RSNA (Table 2) values recorded prior to the first and second series of ICA NaCl injections were not different, indicating that stimuli had no significant effect on resting hemodynamics. Consistent with our previous findings (12), ICA injections of isotonic NaCl were without effect on all recorded variables (Fig. 1A). In contrast, hypertonic NaCl (375 and 750 mM) caused concentration-dependent increases in RSNA (P < 0.05–0.01; Fig. 1B, left) and MAP (P < 0.05–0.001; Fig. 1B, right). HR was unaffected. The onset latency of RSNA and ABP responses to 375 mM and 750 mM NaCl were similar, beginning 3.0 ± 0.4 s and 4.7 ± 0.5 s after completing each injection. The duration of ABP responses to ICA injection 375 mM and 750 mM NaCl was different (P < 0.05), averaging 19.9 ± 1.5 s and 29.1 ± 2.2 s, respectively. Group data demonstrate that the magnitude (Fig. 1B) of RSNA and pressor responses to the first and second series of ICA NaCl injections were highly reproducible. ICA injections of NaCl produced a small increase of Posm (<1%) accompanied by reductions of Hct (~2.5%) and Pprotein (~3.5%) (Table 3).

Effect of Systemic Vasopressin Receptor Blockade

Experiments were performed in a separate group of rats (n = 4) to determine the influence of systemic vasopressin on responses to ICA hypertonic NaCl. Prior to blockade of vasopressin (V1) receptors, changes of MAP, HR, and RSNA to the first series of ICA injections of NaCl (150, 375, and 750 mM) were similar to those in time-control experiments (compare Figs. 1 and 2). Preliminary studies established that a dose of vasopressin (20 ng iv) raised MAP by an average of 23 ± 6 mmHg (n = 3, data not shown). This pressor effect was similar to that evoked by the 750 mM ICA injection of NaCl (see Figs. 1 and 2) and was effectively blocked by the Manning compound (10 μg/kg iv). During systemic blockade of vasopressin V1 receptors, resting MAP and RSNA were unchanged from baseline (Tables 1 and 2). Peak increases of MAP and RSNA to the second series of ICA NaCl injections were also unchanged compared with the first. These data are summarized in Fig. 2B and indicate that systemic vasopressin does not influence short latency pressor and renal sympathoexcitatory responses to ICA hypertonic NaCl.

OVLT mapping. The OVLT was located by constructing stimulus-triggered averages of RSNA at sites within the ventral forebrain. Fig. 3 shows a representative series of RSNA averages. The first was generated from midline ~2 mm rostral to the stereotaxic coordinates for the OVLT (middle, top trace). Stimuli directed at this site had little or no observable effect on RSNA. Stimulating at more caudal sites along the midline evoked progressively larger RSNA responses (middle, 2nd trace), with the maximum occurring at a site later determined from histologic examination to correspond to the OVLT (middle, 3rd trace). Stimuli delivered ventral (middle, bottom trace) and lateral (left and right) to the OVLT produced noticeably smaller RSNA responses. The latency to peak RSNA averaged 157 ± 9 ms in 16 experiments.

Effects of OVLT Lesions

Similar to time-control experiments, ICA injections of NaCl produced short-latency, graded increases in RSNA and ABP prior to lesioning the OVLT (Fig. 4A, left). While passing direct current to lesion the OVLT, HR was unchanged, but MAP fell by an average of ~11 mmHg, from 97 ± 3 mmHg

Table 1. Values of MAP and HR prior to the first and second series of ICA NaCl injections

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>MAP, mmHg</th>
<th>HR, BPM</th>
<th>Series 1</th>
<th>Series 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time control</td>
<td>6</td>
<td>100 ± 3</td>
<td>402 ± 12</td>
<td>100 ± 4</td>
<td>407 ± 13</td>
</tr>
<tr>
<td>VIR blockade</td>
<td>4</td>
<td>99 ± 1</td>
<td>405 ± 5</td>
<td>101 ± 1</td>
<td>404 ± 7</td>
</tr>
<tr>
<td>OVLT lesion</td>
<td>6</td>
<td>102 ± 6</td>
<td>394 ± 15</td>
<td>100 ± 7</td>
<td>412 ± 22</td>
</tr>
<tr>
<td>Vehicle in OVLT</td>
<td>6</td>
<td>97 ± 4</td>
<td>426 ± 12</td>
<td>99 ± 4</td>
<td>439 ± 12</td>
</tr>
<tr>
<td>Muscimol in OVLT</td>
<td>6</td>
<td>99 ± 4</td>
<td>401 ± 15</td>
<td>98 ± 8</td>
<td>402 ± 15</td>
</tr>
<tr>
<td>Muscimol outside OVLT</td>
<td>5</td>
<td>100 ± 4</td>
<td>406 ± 16</td>
<td>95 ± 4</td>
<td>405 ± 16</td>
</tr>
</tbody>
</table>

Values are expressed as means ± SE. ICA, internal carotid artery; MAP, mean arterial pressure; HR, heart rate; bpm, beats per minute; OVLT, organum vasculosum laminae terminalis; VIR, V1 receptor.
to 86 ± 3 (P < 0.05; n = 6). After the lesion, MAP immediately began to rise and returned to the prelesion baseline within 1–3 min. RSNA also fell while passing direct current to a value 94 ± 1.5% of baseline but recovered in pace with MAP (data not shown). Indeed, resting RSNA and MAP recorded prior to the first and second series of ICA NaCl injections were not different (Tables 1 and 2). The lack of persistent change in either MAP or RSNA suggests little contribution of OVLT to the maintenance of ongoing ABP under these experimental conditions. After lesioning the OVLT, RSNA responses to hypertonic NaCl were attenuated (Fig. 4A, left vs. right). Group data (n = 6) indicate that the magnitude of RSNA responses to ICA hypertonic NaCl were significantly (375 mM, P = 0.01, 750 mM, P = 0.05) reduced 15 min after OVLT lesion (Fig. 4B). In contrast, lesions did not significantly alter the magnitude of pressor responses or the time course of RSNA and ABP responses. Histological examination of forebrain tissue showed that lesions effectively destroyed the OVLT with minimal damage to the surrounding neuropil. A representative example of the OVLT lesion is shown in Fig. 4C. Note that tissue destruction was mostly rostral to the optic recess of the third cerebral ventricle at a level mostly anterior to the ventral subdivision of the median preoptic nucleus.

Effects of OVLT Inhibition

To ascertain whether effects of OVLT lesions were attributable to destruction of local neurons or interruption of fibers of passage, RSNA and ABP responses to ICA hypertonic NaCl were recorded before microinjection of muscimol and were compared with responses obtained 15 min thereafter. In these experiments, LSNA was also recorded to assess how ICA hyperosmolality influences sympathetic outflow to different end organs and to determine the role of OVLT in controlling regional SNA responses. Interestingly, LSNA responses were significantly larger than simultaneously recorded RSNA responses (P < 0.001; Fig. 5, A and B). Resting values of MAP, HR, RSNA, and LSNA were maintained after vehicle and muscimol microinjections into the OVLT (Tables 1 and 2).
Likewise, responses to ICA hypertonic NaCl were unaffected by vehicle microinjections (n/H11005/H110116) into the OVLT (Fig. 5A, top, left vs. right and 5B, left). In contrast, injections of muscimol into the OVLT had effects similar to those of OVLT lesion—pressor responses were not affected, but significant reductions were observed in RSNA (375 mM, P/H110210.05, 750 mM, P/H110210.01) and LSNA (375 mM, P/H110210.01, 750 mM, P/H110210.01) responses to hypertonic NaCl (Fig. 5A, bottom, left vs. right and 5B, right).

To verify that effects of muscimol were due to actions within the OVLT, additional control experiments were performed in which muscimol was purposely microinjected 200/9262 m lateral to the OVLT. Results again show that LSNA responses to ICA hypertonic NaCl were significantly larger than RSNA responses under control conditions (P/H110210.01). Laterally injected muscimol was without effect on sympathoexcitatory or pressor responses to ICA hypertonic NaCl (Fig. 6A, top vs. bottom and 6B).

As in previous studies (12, 37–39), the distribution of microinjected muscimol was estimated by the spread of microinjected dye. Histological examination revealed that dye was largely confined to the OVLT, with little spread to the ventral portion of the median preoptic nucleus (Fig. 7, black area). This was evident in dye being restricted to tissue ventral to the anterior commissure and rostral to the optic recess of the third ventricle. At this plane, the anterior commissure appears as two distinct fiber bundles each ~300 m lateral to the midline. Anatomical control microinjections directed lateral to midline did not encroach significantly on the OVLT (Fig. 7, gray area).

DISCUSSION

The OVLT plays a major role in hyperosmolality-stimulated thirst (19, 27, 28, 44, 48) and pituitary release of vasopressin (30, 44, 48) and oxytocin (17, 35). To date, however, involvement of OVLT in mediating hyperosmolality-induced increases of SNA has not been directly assessed. In this study, electrolytic ablation and chemical inhibition of OVLT neurons each attenuated the acute rise of SNA following ICA injections of hypertonic NaCl without affecting resting ABP or SNA. These findings indicate that OVLT neurons play a significant role in mediating sympathoexcitation induced by central hyperosmotic challenge but do not appear to contribute significantly to maintenance of resting ABP or SNA in urethane-chloralose anesthetized rats.

The present findings and those recently provided by Antunes et al. (3) are consistent with our earlier report, which showed that graded concentrations of hyperosmotic NaCl evoke graded...
An alternative explanation for maintenance of pressor responses after OVLT lesion/inhibition is that the pressor effectiveness of SNA could have increased during our experiments. This case because systemic blockade of V1 receptors in this study had no affect on pressor or SNA responses to ICA NaCl. This observation is fully consistent with evidence that pressor responses to electrical stimulation of the OVLT are prevented by ganglionic blockade, indicating dependence on sympathetic activation (26). Finally, because increases of SNA were attenuated after OVLT lesion/inhibition, it would seem that vasoconstrictor actions of vasopressin would have had to undergo enhancement after OVLT manipulations in order for pressor responses to be fully maintained. This is contrary to evidence in the literature (30, 44, 48).

An alternative explanation for maintenance of pressor responses after OVLT lesion/inhibition is that the pressor effectiveness of SNA could have increased during our experiments. Several lines of evidence support this possibility. Increased vascular wall tension can increase vasoconstrictor efficacy of norepinephrine (51), and blood volume expansion increases calcium channel activity in vascular smooth muscle (22). Whether such effects could have been achieved in the present study given the modest increase of blood volume (see Table 3) is not presently known. Even without a frank increase of blood volume, an effective increase of arterial volume may have
occurred if NaCl administration acutely increased cardiac output, thereby transferring blood from the venous to the arterial circulation (45, 52).

After completing OVLT lesion experiments and noticing that pressor responses to ICA NaCl were maintained, we chose to simultaneously record RSNA and LSNA in subsequent microinjection studies. This was done in part to assess whether maintenance of pressor responses to ICA NaCl after OVLT disruption might involve enhanced sympathetic outflow to end organs other than the kidneys. This was not observed. Instead, ICA hypertonic NaCl promptly increased both RSNA and LSNA prior to the rise of ABP. This is consistent with earlier studies that recorded only RSNA (12, 16, 37) or LSNA (3). Interestingly, responses of LSNA were significantly greater than responses of RSNA. Although the neural mechanisms underlying this differential effect are not presently known, there is precedent for such an observation. For example, acute chemical inhibition of the PVN has been shown to reduce LSNA significantly more than RSNA in rats deprived of water for 48 h (40). The extent to which larger LSNA responses to hyperosmolality reflects greater activation of circuits controlling LSNA vs. RSNA or less potent reflex buffering remains to be determined (5, 34, 43).

According to our hypothesis, osmosensitive neurons in blood-brain barrier-deficient CVOs of the lamina terminalis are likely to contribute to central hyperosmolality-induced sympathetic activation. This is consistent with evidence that forebrain CVOs form direct and indirect synaptic connections with downstream sympathetic regulatory neurons in the hypothalamus (21, 25, 31, 36, 46, 47, 49). Indeed, sympathetic activation by central hypertonic NaCl has been linked to activation of the hypothalamic PVN. Importantly, the latter does not depend on intrinsic osmosensitivity of PVN neurons since knife cuts directed rostral to the PVN eliminate hyperosmolality-evoked increases in LSNA (3). Moreover, blockade of PVN ANG II AT1 receptors (13) or ionotropic glutamate receptors (3) attenuates hyperosmolality-evoked SNA responses, thereby suggesting that hyperosmolality activates an angiotensinergic and/or glutamatergic pathway to the PVN that originates from the lamina terminalis. A major role for descending sympathetic control pathways of the PVN has also been demonstrated as a blockade of spinal vasopressin V1 receptors dramatically attenuated the increase of lumbar SNA evoked during vascular perfusion of the CNS with hypertonic NaCl (3).

An important consideration for the current study is that lesion and inhibition of the OVLT each attenuated but did not prevent increases of SNA evoked by ICA hypertonic NaCl. This is reminiscent of evidence by McKinley et al. (28) and Thrasher et al. (48), indicating that OVLT lesions in sheep and dogs, respectively, also failed to fully block hyperosmolality-
stimulated drinking and vasopressin release. Histological analysis of lesion and muscimol microinjection sites indicates that the OVLT was consistently destroyed and fully covered by the diffusion of injected drug. Thus, incomplete ablation/inhibition of the OVLT in the present study seems unlikely to explain our failure to abolish acute increases of SNA. An alternative explanation is that forebrain regions in addition to OVLT contribute to SNA responses. Support for this possibility comes from recent evidence that transection of the brain caudal to the lamina terminalis largely prevents lumbar sympathetic activation by central hyperosmotic challenge (3). One forebrain region that could contribute is the subfornical organ (SFO). Like the OVLT, the SFO is a highly vascular circumventricular organ that lacks a blood-brain barrier (29–31, 49).

Fig. 5. Effects on ABP, integrated RSNA, and integrated LSNA of ICA injections of graded concentrations of NaCl before and after chemical inhibition of the OVLT. A: microinjection of vehicle into the OVLT had no effect on responses to ICA hypertonic NaCl (top, left vs. right). In contrast, responses were blunted following microinjection of the GABA-A receptor agonist muscimol into the OVLT (bottom, left vs. right). B: summary data show that increases in LSNA were significantly greater than increases in RSNA. For the group, vehicle injections did not alter responses to ICA NaCl (n = 6), whereas muscimol significantly reduced both LSNA and RSNA responses without altering pressor responses (n = 6). *P < 0.05 vs. control, **P < 0.01 vs. control, †P < 0.001 vs. corresponding RSNA response.
Moreover, SFO neurons project to hypothalamic and brain stem regions that control SNA (31, 36, 46, 47, 49) and, importantly, exhibit intrinsic osmosensitivity (2). Direct evidence of this effect is provided by experiments in which hypertonic NaCl was injected into the ICA before and after microinjection of muscimol lateral to the OVLT. Fig. 6 shows the effects of ICA hypertonic NaCl injections on ABP, integrated RSNA, and integrated LSNA. Prior to muscimol microinjection, graded increases in ABP, RSNA, and LSNA were observed with injections of 375 and 750 mM NaCl. Isotonic NaCl had no effect. Responses 15 min after microinjection of muscimol lateral to the OVLT were not different from control. Fig. 7 shows histological verification of OVLT microinjection sites. A: section through the forebrain showing a typical microinjection site. Note that the track of tissue damage caused by the stimulating electrode/glass microinjector ends just dorsal to the OVLT and toward its rostral-most extent. B: schematic drawings of microinjection sites targeting the ventral lamina terminalis/OVLT region. Black regions represent the overlapping distributions of Chicago sky blue dye for all rats receiving muscimol microinjections targeting the OVLT. Vehicle injections had a similar distribution (see Fig. 5 for response data). Gray regions indicate the distribution of muscimol injected lateral to the OVLT (see Fig. 6 for response data). The 0.0 mm plane (middle) represents the site at which OVLT stimulation evoked the peak RSNA response.

Moreover, SFO neurons project to hypothalamic and brain stem regions that control SNA (31, 36, 46, 47, 49) and, importantly, exhibit intrinsic osmosensitivity (2). Direct evi-
dence for (or against) a contribution of the SFO in mediating hyperosmotic activation of SNA, however, must await further investigation. It should also be noted that vascular administration of hypertonic NaCl can induce osmotic dehydration of brain regions that possess a complete blood-brain barrier (28, 48). Consequently, it is possible that sites other than forebrain CVOs could also contribute to sympathetic activation by central hyperosmolality.

Although the present study indicates that OVLT neurons contribute to sympathoexcitatory effects of central hypertonic NaCl, the mechanism of osmoreception by OVLT neurons remains to be fully elucidated. On the basis of available evidence, osmotic transduction likely involves activation of stretch-activated cation (SIC) channels (6, 11). The molecular identity of SIC channels is not known with certainty, but N-terminal variant transient receptor potential vanilloid type 1 channels (TRPV1) have been put forth as a likely candidate (38). Indeed, OVLT neurons from mice that lack TRPV1 channel expression fail to respond to hyperosmotic stimulation (14). Moreover, TRPV1-null mice exhibit a basal increase of plasma osmolality and a significantly blunted drinking response to acute hyperosmotic stimulation (14). Future studies that modulate the activity and/or expression of TRPV1 channels to determine how this impacts SNA responses to acute and chronic hyperosmolality should help to clarify the cellular mechanism of osmotic transduction among neurons comprising sympathetic-regulatory pathways.

Perspectives

The present study has demonstrated a significant role for OVLT neurons in mediating increases of renal and lumbar SNA evoked by acute central hyperosmotic challenge. These findings have potentially important implications for understanding sympathetic control under physiological and pathological conditions. Regarding the former, osmotic regulation of SNA is important for maintenance of ABP during water deprivation (10, 40, 41). The mechanism has been shown to involve ANG II (18) and glutamatergic (3, 18) inputs to the SNA is important for maintenance of ABP during water deprivation.

However, it must be emphasized that the cellular targets for modulation of osmosensitivity in supraoptic neurons remain to be fully elucidated. On the basis of available evidence, osmotic transduction likely involves activation of stretch-activated cation (SIC) channels (6, 11). The molecular identity of SIC channels is not known with certainty, but N-terminal variant transient receptor potential vanilloid type 1 channels (TRPV1) have been put forth as a likely candidate (38). Indeed, OVLT neurons from mice that lack TRPV1 channel expression fail to respond to hyperosmotic stimulation (38). Indeed, OVLT neurons from mice that lack TRPV1 channel expression fail to respond to hyperosmotic stimulation (38).

REFERENCES

13. Chen QH, Haywood JR, Toney GM. Sympathoexcitation by PVN-injected bicuculline requires activation of excitatory amino acid receptor.
19. Ho JM, Zierath DK, Savos AV, Femiano DJ, Basset JE, McKinley MJ, Fitts DA. Differential effects of intravenous hypertonic solutes on drinking latency and c-fos expression in the circumventricular organs and