Increased renal adrenomedullin expression in rats with ureteral obstruction

Rikke Norregaard,1,2* Tina Bodker,1,2* Boye L. Jensen,4 Lene Stodkilde,1,2 Søren Nielsen,1,3 and Jørgen Frøkiaer1,2

1The Water and Salt Research Center, 2Institute of Clinical Medicine, and 3Institute of Anatomy, University of Aarhus, Aarhus, Denmark; and 4Department of Physiology and Pharmacology, University of Southern Denmark, Odense, Denmark

Submitted 6 March 2008; accepted in final form 20 October 2008

Am J Physiol Regul Integr Comp Physiol 296: R185–R192, 2009. First published October 22, 2008; doi:10.1152/ajpregu.00170.2008.—Ureteral obstruction is characterized by decreased renal blood flow that is associated with hypoxia within the kidney. Adrenomedullin (AM) is a peptide hormone with tissue-protective capacity that is stimulated through hypoxia. We tested the hypothesis that ureteral obstruction stimulates expression of AM and hypoxia-inducible factor-1 (HIF-1α) in kidneys. Rats were exposed to bilateral ureteral obstruction (BUO) for 2, 6, 12, and 24 h or sham operation and compared with unilateral obstruction (UO). AM mRNA expression was measured by quantitative PCR in cortex and outer medulla (C+OM) and inner medulla (IM). AM and HIF-1α protein abundance and localization were determined in rats subjected to 24-h BUO. AM mRNA expression in C+OM increased significantly after 12-h BUO and further increased after 24 h. In IM, AM mRNA expression increased significantly in response to BUO for 6 h and further increased after 24 h. AM peptide abundance was enhanced in C+OM and IM after 24-h BUO. Immunohistochemical labeling of kidneys showed a wider distribution and more intense AM signal in 24-h BUO compared with Sham. In UO rats, AM mRNA expression increased significantly in IM of the obstructed kidney compared with nonobstructed and Sham kidney whereas AM peptide increased in IM compared with Sham. HIF-1α protein abundance increased significantly in IM after 24-h BUO compared with Sham and HIF-1α immunoreactive protein colocalized with AM. In summary, AM and HIF-1α expression increases in response to ureteral obstruction in agreement with expected oxygen gradients. Hypoxia acting through HIF-1α accumulation may be an important pathway for the renal response to ureteral obstruction.

Norregaard R, Bodker T, Jensen BL, Stodkilde L, Nielsen S, Frøkiaer J. Increased renal adrenomedullin expression in rats with ureteral obstruction. Am J Physiol Regul Integr Comp Physiol 296: R185–R192, 2009. First published October 22, 2008; doi:10.1152/ajpregu.00170.2008.—Ureteral obstruction is characterized by decreased renal blood flow that is associated with hypoxia within the kidney. Adrenomedullin (AM) is a peptide hormone with tissue-protective capacity that is stimulated through hypoxia. We tested the hypothesis that ureteral obstruction stimulates expression of AM and hypoxia-inducible factor-1 (HIF-1α) in kidneys. Rats were exposed to bilateral ureteral obstruction (BUO) for 2, 6, 12, and 24 h or sham operation and compared with unilateral obstruction (UO). AM mRNA expression was measured by quantitative PCR in cortex and outer medulla (C+OM) and inner medulla (IM). AM and HIF-1α protein abundance and localization were determined in rats subjected to 24-h BUO. AM mRNA expression in C+OM increased significantly after 12-h BUO and further increased after 24 h. In IM, AM mRNA expression increased significantly in response to BUO for 6 h and further increased after 24 h. AM peptide abundance was enhanced in C+OM and IM after 24-h BUO. Immunohistochemical labeling of kidneys showed a wider distribution and more intense AM signal in 24-h BUO compared with Sham. In UO rats, AM mRNA expression increased significantly in IM of the obstructed kidney compared with nonobstructed and Sham kidney whereas AM peptide increased in IM compared with Sham. HIF-1α protein abundance increased significantly in IM after 24-h BUO compared with Sham and HIF-1α immunoreactive protein colocalized with AM. In summary, AM and HIF-1α expression increases in response to ureteral obstruction in agreement with expected oxygen gradients. Hypoxia acting through HIF-1α accumulation may be an important pathway for the renal response to ureteral obstruction.

AM is stimulated in a variety of pathophysiological conditions characterized by hypoxia, such as cardiovascular, respiratory, and renal disorders (2, 4, 43, 45). The hypoxia-induced transcription of the AM gene is dependent on the hypoxia-inducible factor-1α (HIF-1α) transcription factor (38). Under hypoxic conditions HIF-1α dimerizes with HIF-1β, the other subunit of HIF-1 (that is not regulated by O2 levels), and this heterodimer HIF-1 translocates to the nucleus where the activation of target genes is mediated by binding to hypoxia-response elements (6, 20, 29, 45). HIF-1α displays a hypoxia-dependent distribution within the kidney (6, 26, 40, 51). Importantly, in patients with ureteropelvic junction obstruction HIF is stimulated in the smooth muscles of the urinary tract and in urothelial cells (41). Moreover, it has been demonstrated that HIF-1α is upregulated in the bladder in response to partially bladder outlet obstruction (9). On the basis of these observations it appears that ureteral obstruction is associated with stimulation of HIF-1α in different segments of the urinary tract, but there is currently no data available on the regulation of HIF-1α in different segments of the urinary tract, but there is currently no data available on the regulation of HIF-1α and downstream HIF gene targets such as AM in the kidney in response to ureteral obstruction. Ureteral obstruction leads to an immediate pregglomerular, transient vasodilatation followed by a long-lasting vasoconstriction simultaneous with an increase in the ureteral pressure (35, 50, 53). In response to 24 h of bilateral ureteral obstruction (BUO; 24-h BUO), there is a decrease in the outer cortical perfusion of ~20% (16, 47), whereas the total renal blood flow (RBF) is decreased to 40–70% of control values in the kidney (15, 34). This leads to decreased O2 delivery and potentially to subsequent hypoxia in the kidney tissue (54). If obstruction persists, this in turn leads to interstitial inflammation, fibrosis, tubular atrophy, and renal failure (1, 47). As shown for renal vascular disorders (44), AM could also be involved in a hypoxia-induced protective response in the obstructed kidney governed by accumulation of HIF-1α. We therefore hypothesized that AM mRNA and protein levels would increase in the kidney in response to ureteral obstruction in keeping with expected oxygen gradients and depending on activation of HIF-1α. To address the hypothesis, a kinetic study was performed, and the temporal and spatial correlation between changes in renal tissue AM and HIF-1α expression was determined in renal tissue subjected to bilateral and unilateral ureteral ligation.

MATERIALS AND METHODS

In vivo rat experiments. All animal experiments were conducted in accordance with the Danish legislation for the care and handling of animals and also with the guidelines published by the National Institute for Animal Health.

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
Institutes of Health. Furthermore, the animal protocols were approved by the board of the Institute of Clinical Medicine, University of Aarhus, according to the licenses for use of experimental animals issued by the Danish Ministry of Justice.

Male Munich-Wistar rats (Møllegaard Breeding Centre, Eiby, Denmark) initially weighing 220 g were used. They had free access to tap water and standard feed (Altromin, Lage, Germany). During the experiments, rats were kept with a 12:12-h light-dark cycle, a temperature of 21 ± 2°C, and humidity of 55%. Rats were anesthetized with a mixture of O2, N2O, and isoflurane in the ratio 4:3:2 and placed on a heating pad to maintain rectal temperature at 37–38°C. The abdomen was closed with 2-0 prolene suture and the skin was issued by the Danish Ministry of Justice. Aarhus, according to the licenses for use of experimental animals by the board of the Institute of Clinical Medicine, University of Health.

Protocol 1: 1) BUO was induced for 2 h. Kidneys were prepared for quantitative PCR (n = 6). 2) Sham-operated controls were prepared in parallel (n = 6).

Protocol 2: 1) BUO was induced for 6 h. Kidneys were prepared for quantitative PCR (n = 6). 2) Sham-operated controls were prepared in parallel (n = 6).

Protocol 3: 1) BUO was induced for 12 h. Kidneys were prepared for quantitative PCR (n = 6). 2) Sham-operated controls were prepared in parallel (n = 6).

Protocol 4: BUO was induced for 24 h (n = 18) and the kidneys were removed and prepared for quantitative PCR, protein isolation (n = 14), and immunohistochemistry (IHC) (n = 4). For matched sham-operated control rats (n = 16), kidneys were prepared for quantitative PCR, protein isolation (n = 12), and IHC (n = 4).

Protocol 5: 1) Unilateral ureteral obstruction (UUO) was induced for 24 h (n = 16). Kidneys were prepared for quantitative PCR (n = 6), protein isolation (n = 6), and IHC (n = 4) for AM. 2) Sham-operated controls rats (n = 16) were prepared in parallel for quantitative PCR (n = 6), protein isolation (n = 6), and IHC (n = 4).

RNA extraction and cDNA synthesis. RNA extraction was performed according to the protocol of Qiagen’s RNeasy mini kit. Approximately 30 mg of kidney tissue was used for isolation, and the RNA concentration was quantified by measuring the optical density at 260 nM on BioPhotometer 6131, Eppendorf, Hamburg, Germany.

cDNA synthesis was performed with Stratagene First-Strand synthesis system (Stratagene, AH Diagnostics, Aarhus, Denmark) in accordance to the manufacturer’s instructions.

Quantitative PCR. For quantitative PCR, 100 ng cDNA served as a template for PCR amplification using Brilliant SYBR Green QPCR Master Mix, according to the manufacturer’s instructions, (Stratagene, AH Diagnostics, Aarhus, Denmark). Serial dilution (1 ng to 1 fg/μl) of cDNA was used as a template for generation of a standard curve. Standards and unknown samples were amplified in duplicate in 96-well plates, and PCR was performed for 40 cycles consisting of denaturation for 30 s at 95°C followed by annealing and polymerization at 60°C for 45 s. Emitted fluorescence was detected during the annealing/extension step in each cycle. Specificity was ensured by postrun melting curve analysis. 18S and TATA box binding protein were used as housekeeping genes for standardization. In this study we used the following primer sequences: rat AM, sense 5′-GCA GTT CCG AAA GAA GTG GAA-3′; rat AM, antisense 5′-GCT GCT GCA CGC TTG TAT CGT-3′ (GenBank acc. no. NM_012715); rat 18S, sense 5′-CAT GGC AGA GTC TCGTTC-3′; rat 18S antisense 5′-CAT GCC AGA GTC TCG TTC-3′ (GenBank acc. no. M11188); TATA box binding protein, sense GAC TCC TGT CTC CCC TAC CC, antisense CTC AGT GCA GAG GAG GGA AC (GenBank acc. no. NM_01004498).

AM measurements in tissue after 24-h BUO and 24-h UUO. Protein was isolated by homogenization of tissue in lysis buffer (1 mM Tris·HCl, 10 mM EDTA, and 1 mM DTT) with protease inhibitor mix (Mini complete Protease Inhibitor; Roche Diagnostics, Vedbaek, Denmark at pH 7.2). Subsequently, 10 μl of Triton X-100 [10% (wt/vol) final concentration] was added followed by centrifugation at 11,000 g at 4°C for 10 min. The supernatant was removed and

AM protein concentration in C+OM and IM from 24-h BUO (n = 6) and Sham control (n = 6) rats was measured by ELISA. AM concentration increases significantly in C+OM and IM in response to 24-h BUO. Bars represent means ± SE. *P < 0.05 BUO compared with Sham rats.

Fig. 1. Expression of adrenomedullin (AM) mRNA in cortex + outer medulla (C+OM) and inner medulla (IM) from sham-operated (Sham) rats and rats subjected to 2-, 6-, 12-, and 24-h bilateral ureteral obstruction (BUO). Representative quantitative PCR (QPCR) for AM/TATA box binding protein (TBP) mRNA level. QPCR was performed using 100 ng cDNA. Analysis of all the samples from sham-operated (n = 6) and obstructed kidneys of rats with BUO (n = 6) revealed that there was an increase of AM mRNA level in C+OM after 12- and 24-h BUO compared with sham-operated rats (A). In IM, AM mRNA level was increased after 6-, 12-, and 24-h BUO compared with sham-operated rats (B). Bars represent means ± SE. *P < 0.05 BUO compared with Sham rats.

Fig. 2. AM protein concentration in C+OM and IM from 24-h BUO (n = 6) and Sham control (n = 6) rats was measured by ELISA. AM concentration increases significantly in C+OM and IM in response to 24-h BUO. Bars represent means ± SE. *P < 0.05 BUO compared with Sham rats.
AM UPREGULATION IN RATS WITH URETERAL OBSTRUCTION

RESULTS

Effect of BUO on renal AM expression and localization. C+OM and IM tissue fraction was harvested at 2, 6, 12, and 24 h after BUO and analyzed for AM mRNA and peptide level. The expression of AM mRNA first increased significantly in

Fig. 3. Immunohistochemistry for AM in kidney cortex and IM of 24-h BUO (A and C) and sham-operated rats (B and D). A: in cortex from obstructed kidneys, immunolabeling for AM was associated with proximal tubuli (PT), connecting tubuli, glomeruli (Glm), interstitial cells, and cortical collecting ducts (CCD). B: in cortex from control kidneys, AM immunoactivity was associated with connecting tubuli and cortical collecting ducts. C: in IM from obstructed kidneys, significant immunoactivity for AM was associated with inner medullary collecting ducts (IMCD), thin limbs of Henle’s loop, papillary epithelium, and interstitial cells. Arrows (A and C) indicate marked labeling in collecting duct in both cortex and IM. D: in IM from control kidneys, AM immunoactivity was associated with IMCD and thin limbs of Henle’s loop. Bar = 50 μm.

AJP-Regul Integr Comp Physiol • VOL 296 • JANUARY 2009 • www.ajpregu.org
pared with Sham and further augmented after 24-h BUO (Fig. 1B). There was a significant higher AM peptide tissue concentration in IM from 24-h BUO rats (45.8 ± 16.6 pg/mg of protein) compared with sham-operated control rats (16.8 ± 7.3 pg/mg of protein). Also in cortex, the AM concentration was increased in response to 24-h BUO (43 ± 13.1 vs. 27 ± 8.5 pg/mg of protein) (Fig. 2).

To address cellular localization of AM, we applied a rabbit anti-rat AM antibody to sections of perfusion-fixed kidneys from sham-operated control rats and from rats subjected to 24-h BUO. Immunohistochemical analysis showed more intense labeling of cortex and IM for AM protein in the 24-h BUO rats (Fig. 3, A and C) compared with Sham (Fig. 3, B and D). There was no obvious difference in the staining intensity between obstruction and nonobstructed kidneys in outer medulla (not shown). In kidneys from sham-operated control rats, AM signals were associated with the connecting tubules and collecting ducts in cortex (Fig. 3B). In the obstructed kidney, AM immunoreactivity was more widespread and associated with the proximal tubules, glomerulus, interstitial cells, and collecting ducts (Fig. 3A). In the outer medulla, AM immunoreactivity was associated with collecting ducts and the thick ascending limb of Henle’s loop. In the IM of kidneys from sham-operated control rats, AM was localized in the thin limbs of Henle’s loop and collecting ducts (Fig. 3D). In kidneys from BUO rats there was labeling of collecting ducts, thin limbs of the loop of Henle, and interstitial cells (Fig. 3C).

Effect of UUO on renal AM expression and localization.

Next, the effect of 24-h UUO on AM expression was examined. In the C+OM tissue fraction, AM mRNA level was elevated compared with Sham in both the obstructed and nonobstructed kidneys, and there was no difference between AM mRNA level in obstructed and nonobstructed kidneys in rats with UUO (Fig. 4A). AM mRNA level in IM was markedly increased in the obstructed kidney compared with both the nonobstructed kidneys and sham-operated rats (Fig. 4A). There was no difference in AM mRNA expression between nonobstructed and Sham kidney (Fig. 4A). AM peptide tissue concentration in C+OM was not significantly different between the three groups (Fig. 4B). AM peptide concentration in IM was significantly higher in the obstructed kidney compared with Sham. There was no difference in AM concentration between nonobstructed and obstructed kidney (Fig. 4B).

IHC showed that AM immunoreactivity was associated with IM collecting ducts, thin limbs of Henle’s loop, and interstitial cells in obstructed kidney IM compared with faint labeling of similar renal segments in contralateral kidneys and sham-operated control rats (Fig. 5). There was no change in labeling intensity in renal cortex between the obstructed and nonobstructed kidneys. In general, AM protein immunoreactivity was stronger in the obstructed and nonobstructed kidneys compared with kidneys from sham-operated control rats, and the labeling was associated with the same segments as kidneys from BUO rats (data not shown).

Effect of BUO for 24 h on renal HIF-1α expression and localization.

Semiquantitative immunoblotting experiments of nuclear extract from both BUO and sham-operated control rats for HIF-1α revealed an elevated abundance of HIF-1α protein in IM in response to 24-h BUO compared with Sham. There was no difference in HIF-1α expression between the two groups in cortex (Fig. 6A). Immunohistochemical labeling of kidney sections for HIF-1α showed that immunoreactive HIF-1α protein was associated with cell nuclei and cytoplasm in the medullary collecting ducts, interstitial cells, and thin limbs of the loop of Henle, and there was a marked increase in the HIF-1α labeling in the obstructed kidneys (Fig. 6B) compared with sham-operated control rats (Fig. 6C).

To test whether HIF-1α and AM localize in the same kidney segments in the papillary tip in response to 24-h BUO, consecutive tissue sections were stained for HIF-1α and AM. IHC demonstrated that HIF-1α and AM in two pairs of consecutive sections was localized in the same kidney segments, namely medullary collecting ducts, interstitial cells, and thin limbs of the loop of Henle (Fig. 7).
Increased TNF-α levels in inner medulla in response to 24-h BUO. TNF-α levels were measured in tissue homogenates from IM from both BUO and sham-operated control rats. Results showed that rats subjected to 24-h BUO had an increase in TNF-α concentration compared with Sham rats (1.08 ± 0.16 vs. 0.61 ± 0.07 pg/ml of protein; P < 0.05).

DISCUSSION

The main results of the present study were that AM mRNA, protein concentration, and tissue distribution increase in C+OM fraction and IM of kidneys in response to BUO. UUO was associated with a differential response: in IM, AM was increased only in the obstructed kidney whereas in C+OM fraction AM was increased both in obstructed and contralateral kidney compared with Sham. The tissue level of HIF-1α protein increased in the renal inner medulla of rats subjected to 24-h BUO. By immunohistochemical labeling, HIF-1α immunoreactive protein was virtually absent in control kidneys. In response to BUO, HIF-1α was associated predominantly with medullary collecting duct segments also positive for AM. The data show that BUO is associated with stimulation of HIF-1α in a pattern likely to reflect oxygen gradients and colocalization with AM in accordance with a role of HIF-1α for stimulation of AM. The present in vivo approach cannot establish whether this relation is causal. The observation that HIF-1α and AM responded differentially in the C+OM tissue in response to obstruction suggests that hypoxia/HIF-1α is less likely to drive the observed increase in AM in C+OM. AM was elevated in C+OM in the contralateral, nonobstructed kidney of UUO rats which was comparable to that observed in sham-operated rats. In cortex from control kidneys, AM immunoreactivity was associated with connecting tubuli and cortical collecting ducts (E), and in the IM AM immunoreactivity was associated with IMCD and thin limbs of Henle’s loop (F). Bar = 50 μm.
cells, and thin limbs of the loop of Henle of BUO kidneys. This is consistent with previous studies demonstrating inner medullary HIF-1α expression localized to the collecting ducts, interstitial cells, and thin limbs of the loop of Henle of hypoxic and ischemic kidneys (40). Previous findings have demonstrated that HIF-1α is primarily localized in the nuclei in response to hypoxia (40). However, we observe HIF-1α localization in both nuclei and cytoplasm in response to 24-h BUO. This staining pattern for HIF-1α was also observed in response to chemotherapy using amifostine (27), demonstrating an intense cytoplasmic and nuclear induction of HIF-1α in renal tubular epithelium after ligation of kidney vessels. The localization of AM and HIF-1α particularly in the collecting ducts and thin limbs of the loop of Henle is compatible with the notion that AM transcription could be controlled by HIF-1α in response to 24-h BUO. AM is locally transcribed in these segments (45).

In addition to hypoxia, AM production is increased in conditions with inflammation, and it has been demonstrated that inflammatory cytokines, such as TNF-α and IL-1β stimulate AM (14, 31, 52, 55). Nitric oxide (NO) directly stimulates AM (14). Ureteral obstruction also leads to an intense infiltration of inflammatory cells (18, 32, 33). Consistent with previous studies demonstrating increased TNF-α expression, it is thus likely that inflammatory cytokines induced by the obstruction may be involved in the enhanced AM expression in

Fig. 6. Semiquantitative immunoblots of hypoxia inducible factor-1α (HIF-1α) using nuclear protein extract isolated from cortex and IM from 24-h BUO (n = 6) and Sham (n = 6) rats. A total of 50 µg protein was used for the HIF-1α assay. A: immunoblot was reacted with anti-HIF-1α antibody and revealed a single ~120-kDa band. Densitometric analyses of all the samples from sham-operated and obstructed kidneys of rats with 24-h BUO revealed that there was no difference between control and obstructed kidneys in cortex. However, HIF-1α protein expression was increased in IM in 24-h BUO compared with sham-operated rats. Immunohistochemistry for HIF-1α from kidney inner medulla IM of 24-h BUO (B) and sham-operated rats (C). *P < 0.05 BUO compared with sham rats. B: IM from obstructed kidneys, significant immunoreactivity for HIF-1α was associated with both nucleus and cytosol in IMCD, thin limbs of Henle’s loop (TL) and interstitial cells. CD, Collecting duct. C: IM from control kidneys showed no HIF-1α immunoreactivity. Bar = 50 µm.

Fig. 7. Immunohistochemistry for AM (A) and HIF-1α (B) in 2 pairs of consecutive sections from IM from rats subjected to 24-h BUO. Sections were processed such that adjacent surfaces were stained. The almost complete overlap in expression of AM and HIF-1α in the tubular cells of the 2 sections should be noted. Bar = 200 µm.
response to urinary tract obstruction. Enhanced formation of NO by increased cortical blood flow with larger shear stress or by inflammatory cytokines could contribute to stimulation of AM independent of oxygen tension and HIF-1α.

After obstruction, AM immunoreactivity was most prominent in collecting ducts, interstitial cells, and thin limbs of the loop of Henle. These findings are consistent with findings by Hofbauer et al. (13), who showed localization of AM protein in the same segments. Furthermore, they also observed strong labeling of AM in both human and rat kidneys subjected to ischemia. AM mediates its effect by binding to its receptor, which comprises RAMPs and CRLR (23, 24). It has previously been demonstrated that RAMP1 and 3, as well as CRLR mRNA levels in whole kidney, is markedly upregulated in response to 6 and 14 days of UUO. However, these alterations appear to be ligand independent, since there was no significant change in the AM gene expression (37).

The present study demonstrated that AM mRNA and protein are increased in both C+OM and IM in the obstructed kidney compared with sham-operated rats in response to 24-h UUO. An interesting finding was that AM was enhanced equally in C+OM of obstructed and nonobstructed kidney in the UUO model. UUO decreases GFR and RBF in the obstructed kidney, and this is associated with compensatory increases in GFR and RBF in the nonobstructed contralateral kidney (10). What is the physiological role of AM in obstructive nephropathy? A protective role for AM is likely to counter endothelial and renal tubular injury in an autocrine/paracrine manner (3, 25, 39). AM is a vasodilator and lowers renal vascular resistance (19). AM increases medullary blood flow and induces diuresis and natriuresis by inhibition of NaCl reabsorption (5, 22, 36). It is well accepted that GFR and RBF are consistently reduced after release of 24-h BUO (8, 10, 30). Furthermore, release of 24-h BUO is associated with a dramatically increased diuresis and natriuresis. It might therefore be speculated that upregulation of AM in response to urinary tract obstruction could contribute to preservation of medullary blood flow in the obstructed kidney. The increased levels of AM could facilitate the observed diuresis and natriuresis by inhibition of NaCl transport, which lowers oxygen demand (21, 22). Elucidation of these mechanisms awaits pharmacological tools to manipulate AM or kidney-specific deletion of the AM gene.

Perspectives and significance of the present findings. The present study using a targeted proteomics approach demonstrates that HIF-1α and the HIF target gene product AM exhibit significantly elevated levels in kidney IM after bilateral and unilateral ureteral obstruction in keeping with the anticipated oxygen gradients. The observation of increased levels of HIF-1α supports the notion that ureteral obstruction is associated with hypoxia, especially within the renal medulla. Further studies should clarify whether AM is important for prevention of tissue injury in response to urinary tract obstruction. Furthermore, it should also be elucidated whether AM expression is increased in the kidney in response to acute obstruction likely secondary to obstruction induced HIF-1α induction as a result of medullary hypoxia.

ACKNOWLEDGMENTS

The authors thank Line V. Nielsen, Inger Merete Paulsen, Gitte Kall, Gitte Skou, Dorte Wulff, and Lis Teuch for expert technical assistance.

REFERENCES

