THE TITLE OF THIS EDITORIAL would seem to suggest a course of action. No doubt we all could use more (or some) exercise. What it actually reflects is a change in the composition of the editorial team based on our experiences over the past two and a half years. When we assumed the stewardship of AJP: Regulatory, Integrative, and Comparative Physiology in July 2007, the journal was publishing, on average, about 80 articles per year on skeletal muscle and exercise (1998–2006). Since 2007, we have seen about a 50% increase in the number of submissions and articles published in this area (125 published in 2007, 116 in 2008, and 120 projected for 2009). We noticed the trend in the first few months of our tenure and invited Scott Powers, PhD from the University of Florida to join the editorial team in mid-2008. Scott’s research interest focuses on the role that redox signaling plays in skeletal muscle remodeling during both exercise and prolonged periods of inactivity.

It didn’t take long for Scott to become one of the busiest of the editors. As the submissions continued to grow, we recognized the need for additional expertise in exercise physiology in both humans and animals and in cellular models. In response to this need, we recruited Darrell Neufer, PhD from East Carolina University and Anne McArdle, PhD from the University of Liverpool to be consulting editors. I am now pleased to inform the readers that starting January 1, 2010, both Anne and Darrell will join the team as associate editors.

Dr. Neufer is the director of The Metabolic Institute for the Study of Diabetes and Obesity and professor in the Departments of Exercise and Sport Science and Physiology at the Brody School of Medicine at East Carolina University, Greenville, NC. His research interests and activities are currently focused on mitochondrial bioenergetics and metabolic disease. Specifically, he is investigating the mechanisms that govern and regulate mitochondrial function (superoxide production, \(H_2O_2 \) emission, membrane potential, calcium retention capacity, etc.), how function of the respiratory system affects mitochondrial as well as cellular redox state, and how mitochondrial function and cellular redox environment regulate insulin sensitivity in the context of obesity and diabetes. Dr. Neufer spent the initial part of his career studying the molecular and cellular mechanisms regulating metabolic gene expression in skeletal muscle in response to diet and exercise interventions. He plans to coordinate review of papers related to the molecular, cellular, biochemical, and physiological control of metabolism, particularly in skeletal muscle.

Dr. McArdle is a Professor in the Faculty of Health and Life Sciences at the University of Liverpool, Liverpool, UK. Anne is past Chair of the British Society for Research on Ageing (BSRA) and currently represents BSRA on the British Council for Ageing. She is a member of the American Physiological Society and the UK Physiological Society. Anne’s research interests include the basic processes by which cells respond and adapt to stress and damage and, in particular, the role that the age-related failure in the stress response plays in the development of age-related skeletal muscle dysfunction. She has demonstrated the importance of rapid induction of responses to the increased reactive oxygen species (ROS) generated by contractions in maintaining muscle viability and the role that an attenuation of these ROS signals and responses play in muscle ageing. Anne has considerable experience in cell and molecular biological studies at the subcellular level through to physiological analysis of tissue function in a number of model systems, including cell culture, animal, and humans.

The addition of Drs. McArdle and Neufer to the editorial team, which already includes Dr. Powers, illustrates our commitment to publishing the best research in exercise and muscle physiology. We encourage authors to submit their best research papers on the integrative physiology of exercise in animals and humans and the molecular, cellular, and genetic basis of muscle function in health and disease. We have a particular interest in receiving papers on the topics listed below, and in the near future, readers should look for a “call for papers” to be issued on some of these.

- Mitochondrial structure, function, and content in health and disease
- Mechanisms regulating exercise-induced mitochondrial biogenesis
- Skeletal muscle as an endocrine organ
- Signaling mechanisms that mediate skeletal muscle adaptations to exercise
- Regulation of muscle regeneration
- Exercise and insulin signaling in skeletal muscle
- Regulation of satellite cell activation

As always, we welcome your input. Please send your comments to the editorial office by e-mail to ajp-regulatory@uiowa.edu.