High-end arteriolar resistance limits uterine artery blood flow and restricts fetal growth in preeclampsia and gestational hypertension at high altitude

Vaughn A. Browne,1 Lilian Toledo-Jaldin,4 R. Daniela Davila,1,4 Luis P. Lopez,4 Henry Yamashiro,1,4 Darleen Cioffi-Ragan,2 Colleen G. Julian,1,3 Megan J. Wilson,1,3 Abigail W. Bigham,6 Mark D. Shriver,6 Benjamin Honigman,1 Enrique Vargas,4 Robert Roach,1 and Lorna G. Moore1,3,5

1Altitude Research Center, Department of Emergency Medicine, 2Department of Obstetrics and Gynecology, and 3Department of Health/Behavioral Sciences, University of Colorado Denver, Denver, Colorado; 4Instituto Boliviano de Biología de Altura, La Paz, Bolivia; 5Graduate School of Arts and Sciences, Wake Forest University, Winston-Salem, North Carolina; and 6Anthropological Genetics Laboratory, Pennsylvania State University, State College, Pennsylvania

Submitted 23 December 2008; accepted in final form 9 February 2011

In this study, we asked whether native Andean or Tibetan women have larger UA diameter and higher volumetric flow during pregnancy than do women of European or Han (“Chinese”) descent, which likely contribute to the heavier (more normal) birth weights and lower incidence of SGA babies seen in Andeans or Tibetans compared with European or Han (“Chinese”) high-altitude residents (12, 13, 27). However, Andean or Tibetan high-altitude natives still have a 2–4 times higher incidence of PE than their low-altitude counterparts (16, 24), suggesting that genetic factors affecting susceptibility to altitude-associated SGA do not protect against PE, and supporting the idea that the etiologies of SGA and PE differ (33, 34).

In this study, we asked whether native Andean high-altitude residents with PE or gestational hypertension (GH) had lower UA blood flow than their normotensive counterparts and, if so, whether the magnitude of flow reduction was related to the severity and occurrence of PE or other pregnancy complications such as preterm delivery and SGA. Secondly, we sought to determine whether such alterations were due to differences in the proximal vs. terminal portions of the uterine vasculature. We hypothesized that UA blood flow was reduced in PE and SGA compared with normal pregnancies, with the degree of reduction being greatest in pregnancies with the
poorest fetal outcomes. We considered that these studies could shed new light on how changes in the proximal vs. terminal uterine circulation contribute to PE and SGA. Such observations, in turn, could be of relevance for identifying predictive tests or new therapies for these pregnancy disorders in any setting but especially in developing countries such as Bolivia, where a high proportion of maternal deaths are due to preeclampsia/eclampsia (16).

MATERIALS AND METHODS

Study Design

This was a cross-sectional, case-control study of women with singleton pregnancies between 20 and 38 wk of pregnancy, and nonpregnant controls who presented for obstetrical care at five hospitals in La Paz (3,600 m), and El Alto (4,100 m), Bolivia. We excluded smokers, those who drank more than two alcoholic beverages weekly before pregnancy, any with active infections, and women at known risk of developing PE or GH (e.g., preexisting hypertension, cardiovascular, or renal diseases, gestational diabetes, and multiple gestation). Women selected for inclusion were self-identified as life-long high-altitude (≥3,600 m) residents of Aymara or Quechua descent. Ancestry was confirmed by parental and grandparental surnames, and a panel of Ancestry Informative Markers, as previously described (40).

All subjects completed a health and demographic questionnaire, underwent an obstetrical exam, and gave written informed consent to study procedures that had been approved by the Colorado Multiple Institutional Review Board and the Colégio Médico, its Bolivian counterpart. During the physical exam, we measured resting heart rate, bilateral upper extremity blood pressures (BP), height, and weight; we estimated adiposity by the sum of biceps, triceps, and subscapular skin-fold thicknesses using Lange calipers (Beta Technology, Santa Cruz, CA); collected urine samples to screen for infection and proteinuria; drew venous blood for storage of serum or plasma; and conducted the Doppler ultrasound exam. Birth weights, newborn characteristics, and occurrence of perinatal or maternal complications were obtained from medical records and postnatal follow-up interviews.

Group Definitions

The study groups comprised women with NORM pregnancies (n = 155), those newly diagnosed with preeclampsia (PE, n = 20) or gestational hypertension (GH, n = 12), and nonpregnant controls (n = 23), who were either nulliparous, or more than 6 mo postpartum. NORM women were, by definition, normotensive and without any pregnancy complications, although a small number (6%) had 1+ proteinuria at the time of study. Women with PE and GH were normotensive before pregnancy, any with active infections, and women at known risk of developing PE or GH (e.g., preexisting hypertension, cardiovascular, or renal diseases, gestational diabetes, and multiple gestation). Women selected for inclusion were self-identified as life-long high-altitude (≥3,600 m) residents of Aymara or Quechua descent. Ancestry was confirmed by parental and grandparental surnames, and a panel of Ancestry Informative Markers, as previously described (40).

All subjects completed a health and demographic questionnaire, underwent an obstetrical exam, and gave written informed consent to study procedures that had been approved by the Colorado Multiple Institutional Review Board and the Colégio Médico, its Bolivian counterpart. During the physical exam, we measured resting heart rate, bilateral upper extremity blood pressures (BP), height, and weight; we estimated adiposity by the sum of biceps, triceps, and subscapular skin-fold thicknesses using Lange calipers (Beta Technology, Santa Cruz, CA); collected urine samples to screen for infection and proteinuria; drew venous blood for storage of serum or plasma; and conducted the Doppler ultrasound exam. Birth weights, newborn characteristics, and occurrence of perinatal or maternal complications were obtained from medical records and postnatal follow-up interviews.

Doppler Flow Velocity Waveforms

Fig. 1. Shown are representative Doppler flow-velocity waveforms from uterine (UA), common iliac (CI), and external iliac (EI) arteries. UA blood flow (QUA) is continuous throughout the cardiac cycle and demonstrates a low-resistance pattern characterized by high peak systolic (PSV), end-diastolic (EDV), and mean flow (MFV) velocities. QCI and QEI demonstrate a high-resistance triphasic pulsatile pattern with an antegrade mid-systolic peak (PSV) followed rapidly by a retrograde minimum early-diastolic velocity (MDV), and then by resumption of forward flow that tapers off in late diastole.
the uterine arteries (UA) at the anatomic level, where the UA appears to cross the EI (18, 19, 30, 40). Mean vessel diameters were calculated as (2 \times \text{end-diastolic} + \text{peak systolic diameter})/3. Flow velocities were measured from traces containing at least six consecutive cardiac cycles of good quality, as described and validated previously (30, 40). Peak systolic (PSV), end-diastolic velocity (EDV), resistive index (RI), pulsatility index (PI), and systolic to diastolic (S/D) velocity ratios were recorded in the UA, while PSV and minimum diastolic velocity records were for the CI and EI (Fig. 1). Total UA blood flow (QUA, l/min) and net antegrade CI and EI flow were reported as the sum of left- and right-sided flows calculated as the product of time-averaged mean flow velocity (TAM, cm/s) and vessel cross-sectional area (cm²) using the equation: Q = \pi r^2 \times TAM \times 0.06, where r is the mean vessel radius. Because of the triphasic nature of the CI and EI waveforms, the MicroMaxx systematically underestimated total blood flow. Therefore, we normalized the flows and flow ratios for these vessels to nonpregnant values. UA vascular resistance was calculated as mean arterial pressure (MAP)/QUA. To improve reproducibility and minimize error, a single operator performed all measurements, which were later reviewed for accuracy by three of the authors. Placental location was recorded in 100 subjects. In more than half of the cases (n = 57), the placenta was centrally located (29 anterior, 17 posterior, 11 fundal); the remainder were laterally placed (19 left, 24 right).

Statistics

In the text, tables, and figures, data are expressed as means ± SE or percentages with 95% confidence intervals after normality was affirmed using Kolmogorov and Smirnov tests. Since groups were independent, we used Student’s t-test or ANOVA with Bonferroni corrections for multiple comparisons. Birth weights were adjusted for gestational age and sex, and frequencies of preterm and SGA births were compared using Fisher’s exact test. All analyses were conducted using InStat and Prism (GraphPad Software, San Diego, CA) and considered significant when P < 0.05.

RESULTS

Maternal Physical Characteristics

The women were overwhelmingly of Amerindian ancestry by self-report and analysis of gene markers; modest differences between groups were due to one or two subjects with a higher proportion of European genes (Table 1). Women with GH or PE were older, heavier, and of higher gravidity than NORM women, but similar in terms of parity, height, and adiposity (data not shown). At the time of ultrasound study, resting heart rate was similar in all groups, but blood pressures were higher in women with GH or PE, despite treatment with alpha-methyldopa and magnesium sulfate.

Maternal Blood Flow Characteristics

Uterine artery. Pregnancy raised UA diameters equally in all groups, and values were similar at mid (20–24 wk) and late (36 wk) gestation (Table 2). Compared with the nonpregnant state, pregnancy lowered UA vascular resistance and indices of end-arteriolar vascular impedance (RI, PI, S/D ratios), but these values were much higher in PE than NORM (Table 2). Women with PE or GH had lower UA blood flow (QUA) than NORM (Fig. 2A) and a higher frequency of bilateral early diastolic notches (PE = 85%, GH = 65% vs. NORM = 8%, both P < 0.01), consistent with higher downstream vascular resistance.

Table 1. Maternal and newborn characteristics in nonpregnant controls, normal pregnancies with term or preterm delivery, gestational hypertension, and preeclampsia before and after 34 wk of pregnancy

<table>
<thead>
<tr>
<th>Pregnancy Stage at Delivery</th>
<th>Nonpregnant (N/A, n = 23)</th>
<th>Normal Pregnancy (Term, n = 119)</th>
<th>Normal Pregnancy (Preterm, n = 6)</th>
<th>GH (Term, n = 12)</th>
<th>GH (Preterm, n = 7)</th>
<th>PE 34 wk (Term, n = 13)</th>
<th>PE > 34 wk (Term, n = 13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ancestry, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amerindian</td>
<td>83.6 ± 1.2</td>
<td>84.6 ± 0.4</td>
<td>79.5 ± 6.8</td>
<td>78.8 ± 2.6†</td>
<td>75.4 ± 5.4‡</td>
<td>83.2 ± 1.6</td>
<td></td>
</tr>
<tr>
<td>European</td>
<td>8.6 ± 1.3</td>
<td>7.1 ± 0.4</td>
<td>12 ± 5.3</td>
<td>14.3 ± 2.4†</td>
<td>17.6 ± 5.7†</td>
<td>8.4 ± 1.6</td>
<td></td>
</tr>
<tr>
<td>West African</td>
<td>7.8 ± 0.7</td>
<td>8.3 ± 0.3</td>
<td>8.5 ± 1.7</td>
<td>6.9 ± 1.0</td>
<td>7.0 ± 0.7</td>
<td>8.4 ± 1.6</td>
<td></td>
</tr>
<tr>
<td>Age, yr</td>
<td>27.3 ± 1.3</td>
<td>26.5 ± 0.5</td>
<td>23.8 ± 2.8</td>
<td>28.2 ± 2.7</td>
<td>27.4 ± 4.6</td>
<td>31.1 ± 1.6§</td>
<td></td>
</tr>
<tr>
<td>Gravidity, no. of pregnancies</td>
<td>1.4 ± 0.3</td>
<td>2 ± 0.14</td>
<td>2 ± 0.4</td>
<td>3 ± 0.98</td>
<td>3 ± 0.72</td>
<td>3 ± 0.6*</td>
<td></td>
</tr>
<tr>
<td>Parity, no. of live births</td>
<td>1.1 ± 0.2</td>
<td>1 ± 0.13</td>
<td>1 ± 0.4</td>
<td>2 ± 0.94</td>
<td>2 ± 0.62</td>
<td>2 ± 0.6</td>
<td></td>
</tr>
<tr>
<td>Height, cm</td>
<td>152.6 ± 1.3</td>
<td>150.4 ± 0.8</td>
<td>150 ± 0.8</td>
<td>153 ± 1.8</td>
<td>151 ± 2.8</td>
<td>151 ± 2.1</td>
<td></td>
</tr>
<tr>
<td>Weight, kg</td>
<td>55.2 ± 1.4</td>
<td>62.8 ± 0.8*</td>
<td>61 ± 3.3</td>
<td>72 ± 3.4†</td>
<td>68 ± 4.1§</td>
<td>81 ± 3.4‡</td>
<td></td>
</tr>
<tr>
<td>Heart rate, beats/min</td>
<td>70 ± 2</td>
<td>77 ± 1</td>
<td>79 ± 2</td>
<td>78 ± 2</td>
<td>78 ± 6</td>
<td>80 ± 3</td>
<td></td>
</tr>
<tr>
<td>Blood pressure, mmHg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic</td>
<td>89 ± 1</td>
<td>91 ± 1</td>
<td>96 ± 2</td>
<td>113 ± 3†</td>
<td>137 ± 5†</td>
<td>127 ± 3‡§</td>
<td></td>
</tr>
<tr>
<td>Diastolic</td>
<td>63 ± 1</td>
<td>60 ± 1</td>
<td>65 ± 2</td>
<td>79 ± 3†</td>
<td>93 ± 3†</td>
<td>86 ± 2‡</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>72 ± 1</td>
<td>71 ± 1</td>
<td>75 ± 3</td>
<td>90 ± 3†</td>
<td>108 ± 4°</td>
<td>100 ± 3°§</td>
<td></td>
</tr>
<tr>
<td>Newborn Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestational age, wk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGA</td>
<td>39.1 ± 0.1</td>
<td>33.8 ± 0.5§</td>
<td>38.1 ± 0.4‡</td>
<td>30.2 ± 1.2‡</td>
<td>38.4 ± 0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SGA</td>
<td>39.1 ± 0.1</td>
<td>33.8 ± 0.5§</td>
<td>38.0 ± 0.6</td>
<td>32.7 ± 0.6§</td>
<td>38.8 ± 0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birth weight, g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGA</td>
<td>3182 ± 40</td>
<td>2136 ± 236§</td>
<td>2748 ± 46‡</td>
<td>1285 ± 238‡§</td>
<td>2742 ± 125*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SGA</td>
<td>3286 ± 38</td>
<td>2136 ± 236§</td>
<td>3130 ± 83</td>
<td>1750 ± 168§</td>
<td>3126 ± 107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SGA babies, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fetuses</td>
<td>1</td>
<td>1</td>
<td>0 (0%)</td>
<td>6 (50%)†</td>
<td>3 (43%)†</td>
<td>6 (46%)§</td>
<td></td>
</tr>
</tbody>
</table>

Values are expressed as means ± SE. *Blood pressure was taken at the time of ultrasound study. (All women with PE or GH had BP >140/90 at the time of admission.) Blood pressures reported for gestational hypertension (GH) and preeclampsia (PE) groups were measured after treatment with alpha-methyldopa and magnesium sulfate. AGA, appropriate for gestational age; SGA, small for gestational age. \(^{*}P < 0.05, \) nonpregnant vs. pregnant; \(^{†}P < 0.05, \) normal pregnancy vs. GH or PE; \(^{‡}P < 0.05, \) GH vs. PE; and \(^{§}P < 0.05, \) term vs. preterm delivery.
impedance. NORM women who delivered preterm also had lower QUA at ≤34 wk (Fig. 2A) that was due entirely to reduced left QUA (Fig. 3). In late-onset PE or GH, QUA was similar to NORM (Fig. 2A), but there were marked differences in unilateral blood flow (Fig. 3). In late-onset PE, left QUA was markedly reduced, and unilateral early diastolic notches were present in more than half of the women, consistent with higher left-sided vascular impedance (Table 2). In contrast, right QUA was higher in late-onset GH and PE, so that total QUA was similar to that seen in NORM. Placental location and its relationship to unilateral QUA did not differ between groups.

Common iliac artery. Pregnancy raised CI blood flow (QCI) due to greater TAM (Fig. 2B, Table 2). QCI was 1.5 to
2 times higher in PE or GH than NORM due to larger diameter, lower retrograde early-diastolic blood flow, and higher TAM (Table 2). QCI was similar before and after 34 wk in NORM and GH, but much higher in late- vs. early-onset in PE due to higher TAM (Fig. 2B, Table 2).

External iliac artery. Pregnancy raised EI diameter in all groups, but TAM increased only in late-onset PE or GH (Table 2). All women with GH and those with late-onset PE had higher EI blood flow (QEI) than NORM (Fig. 2C), as the result of lower retrograde early-diastolic blood flow and higher TAM (Table 2). QEI

Fig. 2. Blood flow in the UA, CI, and EI arteries in nonpregnant controls (Non Preg), normotensive pregnant women who delivered at term (NT) or preterm (NPT), and women with gestational hypertension (GH) or preeclampsia (PE) who were ≤34 wk or >34 wk of pregnancy at the time of ultrasound study. A: compared with NT, uterine artery blood flow (QUA) was lower in NPT and markedly reduced in early-onset but not in late-onset GH and PE. B and C: women who developed PE and GH had greater pregnancy-associated increases in QCI and QEI than NT. P < 0.01 in *NT vs. NPT, GH, or PE; †≤34 wk vs. >34 wk; ‡Nonpregnant vs. pregnant; and §GH vs. PE.

Fig. 3. Left and right QUA were equal in nonpregnant women but dissimilar during pregnancy. Left QUA (A) was consistently higher than the right (B) in normotensive women who delivered at NT and in late-onset GH. The reverse occurred in normotensive women who delivered NPT and in women with PE, with left QUA being much lower than the right QUA. P < 0.01 in *NT vs. NPT, GH, or PE; †≤34 wk vs. >34 wk; ‡Nonpregnant vs. pregnant; and §GH vs. PE.
was much higher in late- vs. early-onset PE but was similar in NORM and GH before and after 34 wk.

Pelvic blood flow distribution. UA/CI ratios were much higher and EI/CI ratios lower in all pregnant women than in nonpregnant controls, reflecting the redistribution of CI flow to favor the uteroplacental circulation (Fig. 4). UA/CI ratios were similar before and after 34 wk in normal pregnancy but reduced in normotensive women who delivered preterm and in all women with GH or PE (Fig. 4A). UA/CI ratios were higher in late- than early-onset GH and PE due to proportionally higher QUA (Fig. 2). Compared with nonpregnant values, EI/CI ratios were lower in GH, early-onset PE, and NORM women >34 wk, likely reflecting higher peripheral vascular resistance.

Fetal Outcomes

Women with early-onset PE delivered preterm, and 43% had stillborn SGA babies (Table 1). Although premature AGA babies were similar in gestational age and weight, those born to women with early-onset PE were younger and more severely growth-restricted than those born to NORM women (Table 1). Women with GH and late-onset PE delivered at term, but had a three-fold greater frequency of SGA (GH = 50%, PE = 46%, NORM = 15%, P < 0.01). Overall, the frequency of low-birth weight infants (<2500 g) was 6.3-fold higher in women with PE and GH than in NORM (44% vs. 7%, P < 0.0001) and was inversely related to UA blood flow (Fig. 5). Across all groups, QUA was strongly and positively associated with infant birth weight ($R^2 = 0.80$, $P < 0.01$, Fig. 5). Furthermore, 76% of women who had reduced UA blood flow at \leq34 wk of pregnancy delivered prematurely, and 59% had SGA babies (Table 1), underscoring the importance of reduced QUA.

FIG. 4. CI artery blood flow is redistributed to favor the UA during pregnancy. A: compared with nonpregnant women who delivered at NT, UA relative to CI blood flow (UA/CI ratio) was reduced in normotensive women who delivered NPT and in women with GH or PE. B: EI relative to CI blood flow (EI/CI ratio) decreased during pregnancy and was lowest in GH, early-onset PE, and NT >34 wk, $P < 0.05$ in *NT vs. NPT, GH, or PE; †<34 wk vs. >34 wk; ‡Nonpregnant vs. pregnant; and §GH vs. PE.

DISCUSSION

This is the first study to compare UA and pelvic flow in Andean high-altitude residents experiencing normal pregnancies, PE, or GH. Our principal findings were that 1) high-end arteriolar vascular resistance, not smaller UA diameter, reduced QUA in PE and GH compared with NORM and 2) the magnitude of QUA reduction correlated with the degree of disease severity and adverse fetal outcomes. Compensatory increases in CI blood flow and dynamic balancing of left and right QUA permitted women with late-onset PE or GH to achieve normal total QUA and maintain pregnancy to term, with an albeit higher incidence of SGA.

Our study findings are subject to certain limitations. The cross-sectional design allowed us to sample women in larger numbers than in other reports but limited our ability to define longitudinal changes. However, the blood flow patterns in the NORM subjects were similar to those seen previously in longitudinal studies of normal pregnant Andean high-altitude residents (13, 30, 40). While both early- and late-onset hypertensive disease was studied, we recognize that the women may have been at fundamentally different time points in the course of their illness since early-onset disease is likely to be diagnosed later in the course of the disease and to be more severe. Therefore, we were careful to compare each group to NORM women whose pregnancies were at the same gestational stage. The accuracy with which volumetric flow can be measured using Doppler ultrasound is limited, but the rise in QUA is due principally to the near doubling of UA diameter, which can be easily identified, and the flow estimates observed agree with more directly measured values (see Ref. 30 for a review). Since a single operator made all measurements, the range of values within groups was narrow, and high reproducibility estimates have been observed previously (30), we consider that the error...
in our Q_{UA} estimates is likely to be <10%. Additional assurance is provided by the fact that our Q_{UA} values are within the expected range, given that cardiac output in pregnant high-altitude Andeans is 5–7 liters (14, 38), the uteroplacental circulation receives 20–25% of cardiac output (23), and ~80% of total uteroplacental blood flow is derived from the UA. Because all PE and GH women received alpha-methyldopa and magnesium sulfate, both of which lower BP and UA vascular resistance (29), we concluded that the Q_{UA} reductions seen in PE or GH were real and may have been more severe than indicated by our data.

Our measurements of Q_{UA} and related parameters in NORM pregnancies are consistent with the known Andean protection from fetal growth reduction (12). The near doubling in UA diameter and rise in UA flow resembles that seen in healthy pregnant women at low altitude (19, 30), suggesting that conservation of physiological mechanisms responsible for enlarging proximal UA enlargement are involved in Andean protection from altitude-associated SGA. This makes physiological sense since the enlarged UA diameter, along with systemic changes in blood volume and cardiac output (3, 7, 23), are responsible for raising Q_{UA} (19, 30). Unlike pregnancy at low altitude, in which UA diameter continues to increase after 20 wk (18, 19), a consistent finding in this and other high-altitude studies is that UA enlargement is maximal by week 20. Since the pregnancy-associated rise in maternal cardiac output is reduced at high vs. low altitude (14), maximal enlargement of UA diameter earlier in gestation may be a physiological mechanism for bolstering uteroplacental blood flow.

A new finding was that while Q_{UA} was lower in GH or PE compared with NORM women, UA diameter was the same. To the best of our knowledge, this is the first measurement of UA diameter in pregnancies characterized by PE or GH at any altitude. These observations indicate that this component of maternal vascular response to pregnancy at high altitude remains intact in the Andean women, unlike what is seen in European high-altitude residents in whom chronic hypoxia reduces the pregnancy-associated rise in UA diameter (11, 13). It also shows that lower Q_{UA} in PE or GH vs. NORM women was due entirely to lower mean flow velocity and, in turn, higher downstream vascular impedance as demonstrated by higher RI, PI, and S/D ratios. Higher vascular resistance was further corroborated by a high prevalence of early diastolic notching, similar to that reported in PE and GH at low altitudes (4, 6) and known to correlate with reduced UA and intervillous blood flow (21). Therefore, we concluded that the low Q_{UA} in Andean women with PE and GH was due to impaired arteriolar growth or dilation (5, 17, 32) and that such effects were independent of influences of pregnancy or hypoxia acting upstream on the main UA.

Another novel finding was the marked asymmetry in bilateral Q_{UA}. In normotensive pregnancies, such asymmetry may be due to supine posture causing aorto-caval compression (15) or anatomic features of the aortic and iliac bifurcations, since UA diameters and impedance ratios were similar on the right and left sides. However, in PE or early-onset GH, vascular impedance was consistently higher in the UA with lower blood flow. This suggests that although PE affects both sides of the uteroplacental circulation, dysregulation of the downstream (i.e., arcuate, radial, or spiral arteries) vascular function is not uniformly distributed. This is consistent with observations that trophoblast invasion and remodeling are reduced but not uniformly distributed at high altitude (36). Hence, asymmetric blood flow may be related to regional heterogeneity in the transformation of spiral arteries into low-resistance vessels (17). Other investigators have shown that when the placenta is laterally placed, volumetric flow is higher and vascular impedance lower in the ipsilateral UA and that there is an increased incidence of PE, fetal distress, Cesarean sections, and IUGR (8, 19, 22). Because we did not observe differences in the location of the placenta among groups or any relationship between placental location and Q_{UA}, we concluded that altered trophoblast invasion and remodeling rather than placenta location was responsible for the asymmetry observed.

Pelvic blood flow was markedly altered in PE and GH, as well as in preterm deliveries. Although Q_{CI} was higher than in NORM, the fraction distributed to the UA was reduced not only in PE or GH but also in normotensive women who delivered prematurely. Blood flow was higher in the ipsilateral CI but lower in the EI on the side with the higher Q_{UA}. Likewise, peripheral resistance in the leg was consistently
higher in the ipsilateral EI but lower in PE than in NORM pregnancies. This suggests that when the UA are maximally enlarged, increasing CI blood flow and decreasing blood flow to the leg may be compensatory mechanisms for raising uteroplacental volumetric flow. Previous studies have shown that the fraction of CI blood flow distributed to the UA is lower in normotensive pregnancies at high vs. low altitude (43, 44), in newcomers compared with high-altitude natives (28, 40, 44), and in late-onset PE compared with normotensive pregnancies (42). Together, these data suggest that pelvic blood flow is dynamically redistributed to optimize QUA over a wide range of conditions, including changing metabolic demands of the growing fetus, maternal posture, and activity (10, 15). These mechanisms restored QUA to normal levels in late- but not early-onset PE and GH, perhaps because of the high downstream vascular impedance or reduced cardiac output (3, 7, 37).

Consistent with previous reports, early- and late-onset PE and GH appeared to be distinct disorders. Compared with NORM, early- but not late-onset disease was typified by normal maternal weight, markedly reduced QUA, and high UA vascular impedance. Elevated QCI maintained normal QUA and even appeared to raise QEI in late-onset PE. These observations agree with previous studies in which lower cardiac output and higher peripheral vascular resistance were seen in women with early-onset PE, whereas late-onset PE or GH was characterized by higher cardiac output and low to normal vascular resistance (3, 7, 37). Thus, early disease appears to represent a failure of both central and uteroplacental vascular responses to pregnancy that serve collectively to reduce uteroplacental blood flow, whereas late-onset disease appears to be more an effort to defend uteroplacental blood flow in a setting where the maternal circulation is encumbered by excess body weight or limitations in oxygen availability, such as are present at high altitude.

Our data confirm a strong association between reduced QUA and decreased birth weight at high altitude (11, 13, 44), and they exhibit, for the first time, the strength of this association when the full range of variation in QUA flow and birth weight are taken into account by the inclusion of women with pregnancy complications. Our data are also consistent with the concept that the increased frequency and severity of SGA in PE and GH are related to high UA vascular resistance and low intervillous blood flow (4, 6, 9, 17–19, 21, 31). Thus, maintenance of high UA blood flow during pregnancy at high altitude appears to play a key role in defending fetal growth, as well as in the pathogenesis of PE and GH, but whether the benefits accrue from increased delivery of oxygen or other nutrients, defense of placental metabolism, or other factors is unknown (25, 44, 45).

Perspectives and Significance

The maternal vascular response to pregnancy in multigenerational high-altitude populations is thought to reflect key heritable adaptations that improve reproductive success by maintaining a normal increase in uteroplacental blood flow. Despite these adaptations, multigenerational high-altitude populations are equally vulnerable to effects of hypoxia acting to increase the incidence of PE and GH, underscoring the likelihood that the etiologies of SGA and PE/GH differ. Together, with previous studies, these observations suggest that Andean ancestry acts to preserve normal UA enlargement but does not prevent the impaired trophoblast invasion and remodeling of maternal end-arterioles characteristic of PE or GH. Early- vs. late-onset PE or GH are distinguished not only by the severity of impaired vascular remodeling but also by the ability to increase maternal cardiac output and redistribute QCI to the UA in an attempt to overcome downstream flow limitations. Further studies are needed to better understand what factors influence individual susceptibility to early vs. late-onset disease and, in particular, the contributions of alterations in HIF- or other oxygen-sensitive genes (1, 2), gene expression, and/or circulating levels of vasoactive or angiogenic factors. It will also be important to determine whether the changes in UA and pelvic blood flow seen in PE or GH at high altitude also occur at low altitude and whether measuring QUA in high-risk pregnancies could improve early detection or prediction of fetal outcomes.

ACKNOWLEDGMENTS

This study would not have been possible without the generous support of SonoSite, which supplied the ultrasound equipment. We thank Armando Rodriguez, Martha Aguilar, and Marcelino Guarachi at Instituto Boliviano de Biologia de Altura for their technical assistance, and acknowledge the vital collaboration of the hospital administrators, OB/Gyn physicians, and nurses at Hospital de la Mujer, Hospital Materno-Infantil, Hospital Andes, Hospital Boliviano Holandes, and Hospital Corea in La Paz and El Alto, Bolivia. We also thank Jennifer Hageman, Paige Sheen, and Barbara Lommen for their logistic and administrative support.

GRANTS

This study was funded by National Heart Lung and Blood Institute Grants HL079647 and HL079647-S1.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.

REFERENCES

