Decrease in the red cell cofactor 2,3-diphosphoglycerate increases hemoglobin oxygen affinity in the hibernating brown bear *Ursus arctos*

Inge G. Revsbech,1 Hans Malte,1 Ole Fröbert,2 Alina Evans,3 Stéphane Blanc,4 JohanJosefsson,2 and Angela Fago1

1Zoophysiology, Department of Bioscience, Aarhus University, Aarhus C, Denmark; 2Department of Cardiology, Örebro University Hospital, Örebro, Sweden; 3Department of Forestry and Wildlife Management, Campus Evenstad, Hedmark University College, Elverum, Norway; and 4Institut Pluridisciplinaire Hubert Curien, Département d’Écologie Physiologie et Ethologie, UMR 7178, Centre National Recherche Scientifique, Strasbourg, France

Submitted 21 September 2012; accepted in final form 15 November 2012

A DISTINCT TRAIT OF MAMMALIAN hibernation is the highly controlled decrease in body temperature and metabolic rate. A hibernating brown bear (*Ursus arctos*) routinely spends 5–7 mo per year in continuous dormancy with no food or water intake, no urination, and no defecation (19, 36). During this time, bears appear to be resistant to loss of muscle mass, strength, or bone density (18, 24, 29, 43, 14, 44). During hibernation bear body temperature is downregulated only slightly, fluctuating from ~37°C to a minimum of 30°C, as found in brown and in black bears (*Ursus americanus*) (17, 26, 27, 36, 43), whereas O2 consumption rate is downregulated by 75% (43). In comparison, in most smaller hibernators, such as ground squirrels and marmots, body temperature drops dramatically to values close to ambient temperatures (32, 37, 48), with a consequent strong Q10-induced depression of metabolic rate (where Q10 is the rate coefficient for a 10°C change in temperature). In spite of substantial downregulation of ventilation and heart rate, most hibernators likely experience only slight or no hypoxia and in some ground squirrels arterial O2 tension (Po2) is normal during torpor (16). As opposed to smaller hibernators that exhibit periods of spontaneous arousals back to normothermic temperature and metabolic rate (33, 31), bears do not arouse to normothermic temperature during winter but have shallow multiday cyclic (1.6–7.3 days) fluctuations in body temperature (43). Nevertheless, as demonstrated in a recent study (43), bears exhibit a strong active aerobic metabolic depression and a weight-specific metabolic rate similar to that of smaller hibernators (20, 25, 43), and for this reason, they are now recognized as true hibernators, even though they do not show the dramatic drop in body temperature and arousals typical of small hibernators (43). Whether and how the blood O2 transport of bears adapts to a decreased O2 supply to tissues during hibernation is however, still unknown.

Earlier studies have found that in small hibernating mammals, blood O2 affinity increases markedly during hibernation (4, 9, 32). Potentially, blood O2 affinity can be affected in two ways: by structural changes in the blood O2 carrier hemoglobin (Hb) that lead to changes in the protein sensitivity to allosteric cofactors and temperature, or by changes in the concentration of allosteric cofactors inside the red blood cell. Such allosteric cofactors include organic phosphates that bind to the central cavity of the Hb tetramer and decrease O2 affinity by shifting the allosteric T-R equilibrium between the low-affinity (T) and the high-affinity (R) protein conformation toward the T state. In most mammalian Hbs, the main anionic cofactors are the organic phosphate 2,3-diphosphoglycerate (DPG) and Cl–, that in bear Hb have a large synergistic effect in regulating O2 binding (11). DPG binds allosterically to the low-affinity T-state conformation of mammalian Hbs and, thereby, decreases Hb-O2 affinity (5). An increase in erythrocytic DPG decreases Hb-O2 affinity, and, conversely, a decrease in DPG increases Hb-O2 affinity.

An increase in blood O2 affinity has been observed in several small hibernating animals during dormancy (4, 34), but has not yet been measured in bears. Although the molecular mechanisms for a hibernation-induced increase in blood O2 affinity have not been much investigated, reductions in DPG levels...
have been found to be involved in the hedgehog (28) and possibly in some hibernating rodents (23, 32).

Here, we report O2 binding curves of red blood cell hemolysates and purified Hb from free-ranging radio-collared brown bears during summer activity and winter hibernation. Curves were measured at temperatures close to the lowest measured body temperature of hibernating bears and the normothermic temperature of nonhibernating bears, 30°C and 37°C, respectively (26, 43), to take into account the effect of temperature on Hb oxygenation. We also examined Hb multiplicity, concentration levels of the allosteric cofactor DPG present in the red cells, and of plasma lactate to evaluate possible differences in glycolytic activity for hibernating and nonhibernating bears.

MATERIALS AND METHODS

Blood sample collection and preparation. Samples of blood were taken from the same six free-ranging 2- to 3-yr-old Eurasian brown bears, Ursus arctos, three females and three males captured during winter hibernation (February: females 35, 57, and 59 kg; males 21, 25 and 58 kg) and summer (June: females 28, 72, and 47 kg; males 27, 51, and 22 kg) in Dalarna county, Sweden, as described previously (17). The bears were immobilized by darting in the den during February 2011 and again by darting from a helicopter during June. Bears were anesthetized as described in detail in a previous study (17). Briefly, in winter, a mixture of tetratolozelamine (1.1 mg/kg, except 2.5 mg/kg in one male bear, 25 kg), medetomidine (0.03 mg/kg) and ketamine (1.3 mg/kg, except 3 mg/kg in one male bear, 25 kg) was used, and in summer, a mixture of tetratolozelamine (4.7 mg/kg) and medetomidine (0.09 mg/kg) was used. Doses were based on body mass and time of year (due to differences in expected metabolism), as previously reported (17). Blood samples were taken within ~20 min from darting. All animal handling and sampling was carried out under approval of the Swedish Ethical Committee on animal research (C212/9). The performed procedure was in compliance with Swedish laws and regulations. In the field, blood samples (~1 ml) were taken from the jugular vein of anesthetized animals into syringes containing 50 μl of 200 mM EDTA as anticoagulant. At the time of sampling, rectal temperature of the bears was 33.8°C during summer sampling and 39.1°C during winter sampling and 39.1°C, respectively (26, 36, 43). Curves were determined using a modified diffusion chamber, as described previously (40, 45) at a heme concentration of 1 mM in 0.1 M HEPES buffer, pH 7.4. A pH of 7.4 was chosen, as it is close to normal mammalian blood pH. Two HEPES buffer stock solutions (1 M) differing slightly in pH were used to achieve the same final pH of 7.4 of the sample at the two chosen temperatures. For each sample, pH was measured using a Radiometer BMS2 Mk2 microelectrode assembled to a Radiometer PHM64 pH meter. In each experiment, a thin layer (~0.01 mm) of sample was equilibrated with humidified gases of varying O2 tensions supplied by two cascaded Worthoff (Bochum, Germany) gas-mixing pumps mixing pure (99.998%) N2 and air. Changes in absorbance at 436 nm upon stepwise increases in PO2 within the chamber were monitored to determine changes in O2 saturation as a function of changes in PO2. Zero and 100% O2 saturation were obtained from equilibrium with pure N2 and O2, respectively. For each equilibration step, absorbance was obtained using the in-house made data acquisition software Spectrosonar (available on request). The O2 partial pressure required to achieve 50% saturation of the Hb (P50) and cooperativity coefficient at 50% saturation (n50) were calculated from the zero intercept and slope, respectively.

Oxygen binding measurements of hemolysates. O2 equilibrium curves were determined at constant temperatures of 30 and 37°C (±0.2°C). These temperatures were chosen as they are near to the lowest body temperature measured in hibernating bears and the normal temperature in summer active state, respectively (26, 36, 43). Curves were determined using a modified diffusion chamber, as described previously (40, 45) at a heme concentration of 1 mM in 0.1 M HEPES buffer, pH 7.4. A pH of 7.4 was chosen, as it is close to normal mammalian blood pH. Two HEPES buffer stock solutions (1 M) differing slightly in pH were used to achieve the same final pH of 7.4 of the sample at the two chosen temperatures. For each sample, pH was measured using a Radiometer BMS2 Mk2 microelectrode assembled to a Radiometer PHM64 pH meter. In each experiment, a thin layer (~0.01 mm) of sample was equilibrated with humidified gases of varying O2 tensions supplied by two cascaded Worthoff (Bochum, Germany) gas-mixing pumps mixing pure (99.998%) N2 and air. Changes in absorbance at 436 nm upon stepwise increases in PO2 within the chamber were monitored to determine changes in O2 saturation as a function of changes in PO2. Zero and 100% O2 saturation were obtained from equilibrium with pure N2 and O2, respectively. For each equilibration step, absorbance was obtained using the in-house made data acquisition software Spectrosonar (available on request). The O2 partial pressure required to achieve 50% saturation of the Hb (P50) and cooperativity coefficient at 50% saturation (n50) were calculated from the zero intercept and slope, respectively, of Hill plots, log[Y/(1-Y)] vs. log PO2, where Y is fractional saturation. Hill plots were based on at least 4 saturation steps between 0.3 and 0.7.

The temperature dependence of O2 binding expressed as the apparent heat of oxygenation (kcal/mol, 1 kcal = 4.184 kJ/mol) was calculated by the van’t Hoff equation: DH = −4.57 [T3(T1/T2 − 1)] × ΔlogPO2/1,000 kcal/mol, where T1 and T2 are the absolute temperatures (Kelvin) and ΔlogP50 is the corresponding difference in logP50 at the two temperatures. The DH values presented have been corrected for heat of O2 in solution (~3.0 kcal/mol (1)).
(Millipore) spin tubes. O₂ binding curves for all Hb samples were measured at 30°C and 37°C, as described above (0.1 M HEPES, pH 7.4, 1 mM heme) in the presence of added DPG and Cl⁻. For each Hb sample, summer or winter, DPG was added to obtain the same Hb tetramer to DPG ratio as that measured in the (unstripped) hemolysates. Chloride (Cl⁻) was added to the same final concentration as that measured in the hemolysates (10 mM) using 1 M NaCl. Cl⁻ concentration was measured using a Sherwood MKII model 926S chloride analyzer (Sherwood Scientific), requiring 5 μl per assessment (measurements were done in duplicates).

Plasma lactate concentration. To assess for changes in anaerobic metabolism, concentration of lactate was determined enzymatically in the plasma of winter and summer blood samples, following a previously described method (38). This method utilizes the stoichiometric conversion of NAD⁺ to lactate and NADH and pyruvate by lactate dehydrogenase (LDH), reaction 1 in the scheme below. The reaction is kept shifted to the right by the constant removal of pyruvate, which reacts with glutamate in the presence of glutamic pyruvate transaminase (GPT), reaction 2, as shown below. Production of lactate (in the hemolysates) is quantified from the increase in absorbance at 340 nm using the extinction coefficient of 6.22 mM⁻¹ cm⁻¹.

\[
\text{Lactate} + \text{NAD}^+ \leftrightarrow \text{Pyruvate} + \text{NADH} + \text{H}^+ \quad (1)
\]

\[
\text{GPT} \quad \text{Pyruvate} + \text{glutamate} \rightarrow \text{alanine} + \alpha - \text{keto glutamate} \quad (2)
\]

The original method of Passonneau and Lowry was slightly modified. Thawed plasma (35–50 μl) was used directly for the assay (1 ml total volume) in 1-cm cuvettes. Final concentrations in the cuvette were: 50 mM 2-amino-2-methylpropanol buffer (ICN Biomedicals, Santa Ana, CA), pH 9.9; 50 mM glutamate (l-glutamic acid monosodium salt; ICN Biomedicals), pH 9.8; 3 mM NAD⁺ (NAD⁺ free acid, grade II, 98%; Roche Diagnostics); 100 μg/ml LDH (from bovine heart, type XVII; Sigma-Aldrich), 100 μg/ml GPT (Roche Diagnostics). Glutamate and NAD⁺ solutions were prepared each day and kept on ice until used. Absorbance of samples was recorded immediately after addition of GPT and again after 30-min incubation at room temperature until absorbance was stable. A blank (containing milliQ water instead of plasma) was run in parallel every 1–4 samples. A standard curve was constructed from 0.1 to 2 mM lactate (sodium l-lactate; Sigma-Aldrich). Greatest linearity was observed in the lower end of this concentration range (0.1 to 0.5 mM lactate). Application of the indicated plasma volumes, the measured lactate values were in the most sensitive range of the calibration curve.

Estimation of venous Po₂. Estimations of the venous O₂ partial pressure (PvO₂) in brown bears during activity and hibernation were carried out applying physiological data obtained in a recent study on black bears (43) that reports matching data for body weight, heart rate, and O₂ consumption during activity and hibernation in the same, undisturbed individuals, under the assumption that the respiratory and cardiovascular physiology of resting brown and black bears is overall the same. We first calculated the mixed venous O₂ concentration (CvO₂) from the Fick equation for hibernating and summer active bears:

\[
\text{CvO}_2 = \frac{\text{CaO}_2 - \frac{\dot{V}_O_2}{Q}}{\text{P}_50}
\]

where \(\text{CaO}_2\) is the arterial blood O₂ concentration, \(\dot{V}_O_2\) is the O₂ consumption rate, and \(Q\) is the cardiac output (i.e., heart rate × stroke volume). At any given Po₂, O₂ concentration in either arterial or venous blood (Cₐₒ₂) is given by the sum of the physically dissolved O₂ (Bₒ₂, Po₂) and that bound to Hb, which, in turn, is the product of the tetrameric Hb concentration (4CHb) and the fractional O₂ saturation given by the Hill equation, as indicated below:

\[
C_{O_2} = \beta_{O_2} \cdot P_{O_2} + 4C_{Hb} \cdot \frac{P_{O_2}^n}{P_{O_2}^n + P_{50}^n}
\]

where \(n\) is Hill’s cooperativity coefficient (nₜₒₒ) and \(P_{50}\) is the half-saturation partial pressure and \(B_{O_2}\) is the physical solubility of O₂ (8). We used nₜₒₒ and \(P_{50}\) values measured here at 37°C and 30°C for summer and winter samples, respectively (see Table 1 under RESULTS). Caₒ₂ was first calculated from Eq. 4 assuming an arterial Paₒ₂ of 100 torr and an intracellular tetrameric Hb concentration of 5 mM and using reported values of hematocrit (Hct) of 45 and 56.8% for brown bears measured during summer and winter, respectively (2). O₂ consumption rates (VO₂) of 0.30 and 0.069 ml O₂ g⁻¹ h⁻¹ and heart rates of 55 bpm and 14.4 bpm were taken from previously published values (43) for summer and winter black bears, respectively. Cardiac output was calculated from the heart rate using a stroke volume of 0.06 liter as expected for a 60-kg bear (i.e., the mean weight of the bears used in the study of 43), as described by Schmidt-Nielsen (39). After obtaining Caₒ₂, the Cvₒ₂ value for summer active and hibernating bears was obtained by Eq. 3, and was then used in Eq. 4 to obtain Pₒ₂ values. Calculations were performed by iteration using a Mathematica script (Wolfram Research, Champaign, IL).

Statistics. Values are presented as mean ± SD. Paired t-test was used for the statistical comparison between summer and winter individual samples. Comparisons were statistically significant with \(P \leq 0.001\). One comparison of Pₒ₂ of hemolysates at summer 37 and 30°C (Fig. 2B) was found to be significant by the Wilcoxon signed rank test, with \(P = 0.031\).

RESULTS

There was no indication of variation in Hb isoforms between summer and winter blood samples, as determined by IEF gels (Fig. 1). Bears expressed a single Hb with an isoelectric point similar to that of human HbA.

Oxygen binding curves of summer and winter hemolysates measured at 30°C and 37°C, and the corresponding changes in \(P_{50}\) are shown in Fig. 2. When measured at the respective physiological temperatures, O₂ affinity of winter hemolysates measured at 30°C was significantly higher (i.e., \(P_{50}\) was significantly lower) than that of summer hemolysates measured at 37°C (Fig. 2, Table 1). Although a significant effect of temperature on \(P_{50}\) values was observed (Fig. 2B), the temperature change alone was not enough to provide the observed shift in the O₂ equilibrium curve (Fig. 2A), and \(P_{50}\) values of winter and summer samples measured at identical temperatures were significantly different (Fig. 2B), suggesting changes in a soluble red cell allosteric cofactor. The cooperativity coefficient nₜₒₒ was also significantly lower in winter compared with summer (Table 1), regardless of the temperature of measurement, indicating a change in the overall allosteric equilibrium between T and R state. The heat of oxygenation (ΔH) was similar in summer and winter.

| Table 1. O₂ affinity (P₅₀), cooperativity coefficients (nₜₒₒ) measured at 30°C and 37°C and derived heat of oxygenation (ΔH) in brown bear hemolysates during winter and summer |
|---|-----------------|-----------------|-----------------|-----------------|-----------------|
| | Summer 37°C | Summer 30°C | Winter 37°C | Winter 30°C |
| P₅₀, torr | 15.4 ± 0.6 | 10.0 ± 0.4 | 11.4 ± 0.8 | 7.3 ± 0.6* |
| nₜₒₒ | 2.4 ± 0.1 | 2.4 ± 0.1 | 1.9 ± 0.2* | 1.7 ± 0.2* |
| ΔH, kcal/mol | −8.5 ± 0.8 | −8.5 ± 0.8 | −8.5 ± 0.8 | −8.5 ± 0.8 |

*Significant differences (\(P < 0.001\)) from summer values (means ± SD); \(n = 6\).
winter samples, with values of -8.5 ± 0.8 kcal/mol and -8.7 ± 1.5 kcal/mol, respectively.

The red cell hemolysate DPG concentration was significantly lower in winter compared with summer hemolysates (Table 2). O$_2$ equilibria are largely affected by DPG to Hb tetramer ratios rather than by DPG concentrations alone. In the winter samples this ratio was $\sim 1:1$, whereas in the summer samples it increased significantly to $\sim 2:1$. Plasma lactate did not vary significantly between winter and summer (Table 2).

To evaluate whether the observed left shift in the O$_2$ equilibrium curve found for the hemolysate of hibernating bears (Fig. 2) was due to a decrease in DPG, we removed endogenous DPG from the hemolysate from three bears, added exogenous DPG to the same DPG:Hb tetramer ratio as in the untreated hemolysate (i.e., 2:1 for summer samples and 1:1 for winter samples) and measured O$_2$ equilibria at the two temperatures. Cl$^-$ was added to the same final concentration as measured in the untreated hemolysates (10 mM Cl$^-$). The P_{50} and n_{50} values (means ± SD, $n = 3$) obtained in these samples were for winter bears 6.6 ± 0.5 torr, and 1.8 ± 0.04 (30°C), 9.5 ± 0.9 torr and 1.7 ± 0.02 (37°C), respectively. For summer bears, the same parameters were 9.2 ± 0.2 torr and 2.0 ± 0.18 (30°C), 12.6 ± 0.2 torr, and 2.0 ± 0.09 (37°C), respectively. As shown in Fig. 3, the change in P_{50} between summer and winter samples obtained with purified Hb added to DPG was not significantly different from that obtained with the untreated RBC lysates, at both temperatures (Fig. 3), demonstrating that the change in DPG concentration was responsible for the left-shifted O$_2$ equilibrium curves of hibernating bears reported in Fig. 2.

When assuming similar heart rates and O$_2$ consumption as in undisturbed hibernating and active black bears (43), the O$_2$ tension of mixed venous blood (that approximates that existing in tissues) in hibernating and active brown bears can be

Table 2. DPG concentrations and DPG to hemoglobin tetramer molar ratios in red blood cells and plasma lactate concentrations in brown bear hemolysates during summer and winter

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>RBC DPG, mM</th>
<th>[DPG]/[Hb 4]</th>
<th>Plasma Lactate, mM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer</td>
<td>4.41 ± 0.50</td>
<td>2.12 ± 0.39</td>
<td>5.81 ± 2.77</td>
</tr>
<tr>
<td>Winter</td>
<td>2.37 ± 0.39*</td>
<td>0.99 ± 0.21*</td>
<td>3.05 ± 1.32</td>
</tr>
</tbody>
</table>

*Significant differences ($P < 0.001$) from summer values (means ± SD); $n = 6$. RBC, red blood cells; DPG, 2,3-diphosphoglycerate.

Fig. 1. Representative isoelectric focusing gel performed on three individual brown bear summer and winter hemolysates, indicating the presence of a single hemoglobin isoform as in human hemolysate. Identical results were obtained with the remaining individual bear hemolysates (not shown).

Fig. 2. A: representative Hb-O$_2$ binding curves from winter and summer hemolysates of one individual brown bear measured at 30°C and at 37°C. B: P_{50} values (means ± SD) for summer and winter hemolysates at 30°C and 37°C ($n = 6$). *Significant differences ($P < 0.001$) in P_{50} between 37°C and 30°C. **Significant differences ($P < 0.001$) between summer and winter. One comparison of P_{50} values (summer 37°C and 30°C, left-hand columns) was significant by Wilcoxon signed rank test ($P = 0.031$). Conditions were 1 mM heme, 0.1 M HEPES buffer, pH 7.4.

Fig. 3. Changes in P_{50} (torr) for brown bear winter and summer hemolysates ($n = 6$) and for samples of purified Hbs containing the same DPG/Hb tetramer molar ratios ($n = 3$) as in summer and winter hemolysates (Table 2), measured at 30°C and 37°C. NS, not significant.
predicted from the Fick equation when knowing values for P_{50}, cooperativity coefficients n_{50} and blood Hb concentration, as described in detail under MATERIALS AND METHODS. Figure 4 shows the predicted O_2 equilibrium curves for winter and summer animals along with the estimated arterial and venous O_2 saturation and respective P_{O_2} values. In the calculations, P_{50} and n_{50} values were those measured at the physiological temperatures of 37°C and 30°C for summer and winter samples, respectively (Table 1). As evident from Fig. 4, winter O_2 content of the blood is considerably elevated because of the increase in Hct occurring during hibernation (2). If the O_2 binding curve had remained unchanged during winter (dotted line, Fig. 4), venous P_{O_2} would have been substantially elevated (~21.8 torr). However, a left-shift in the Hb-O_2 binding curve may avoid this situation and maintain $P_{V_{O_2}}$ of hibernating brown bears relatively unchanged (summer ~14.8 and winter ~11.5 torr) (Fig. 4).

DISCUSSION

In this study of free-ranging brown bears, we found a marked left-shift of the O_2 equilibrium curve during hibernation, which was associated with an increase in the Hb-O_2 affinity and a decrease in cooperativity. We demonstrated that the differences between hibernation and active state can be explained by a decrease in the red cell cofactor DPG, a major allosteric cofactor of Hb, whereas the reduction in body temperature during hibernation alone cannot account for the observed shift in Hb oxygenation. In concert with decreased ventilation and heart rate, a left-shifted O_2 equilibrium curve would maintain the necessary O_2 supply to tissues under conditions of a prolonged depressed O_2 consumption rate, as during hibernation. Such long-term effects are typically mediated by changes in the levels of organic phosphates, from high-altitude mammals (46) to hypoxic fish (47). A similar decrease in DPG levels as found here has been demonstrated in other hibernating mammals, such as the 13-lined ground squirrel, the golden-mantled ground squirrel, the woodchuck, and the hedgehog (7, 23, 28, 32). However, only in the hedgehog has the DPG decrease been demonstrated to be directly coupled with the increase in blood O_2 affinity during hibernation (28).

By contrast, high O_2 consumption rates, as during intense muscle exercise, are typically associated with a transient right shift of the O_2 binding curve, as, for example, due to the Bohr effect. In this study, we found that during hibernation, a depressed O_2 consumption rate was not compensated for by increased glycolysis, as plasma lactate levels did not increase in winter samples, in agreement with previous measurements (17). Levels of plasma lactate found in winter (3.05 ± 1.32 mM) were comparable to normal human values (22, 30, 41). The higher variation of plasma lactate concentration in the summer samples may reflect a more variable activity of the individual bears at the time of sampling (Table 2). This further confirms that energy metabolism in hibernating bears is essentially aerobic, as also indicated by the use of fatty acids as the primary energy fuel (35, 36).

When in the presence of anionic allosteric effectors, the Hb from brown bear, similar to that from other polar and cold-tolerant mammals, shows a reduced temperature sensitivity (i.e., a less negative ΔH) compared with other mammals, including humans (3, 11, 12, 21), a feature that has been attributed to the presence of an additional allosteric Cl$^-$ binding site on the β subunit between residues Lys88β and Lys76β (11, 12). Limited effect of temperature on Hb-O_2 binding facilitates O_2 delivery to poorly insulated body parts, including cold extremities in contact with ice, a feature that has been interpreted as an energy-saving adaptive mechanism (10, 13). In bears, the comparatively small decrease in body temperature during hibernation would then cause a slight (albeit significant, Fig. 2B) effect on the O_2 binding curve, as shown here by us and earlier by others (11). The calculated heat of oxygenation (ΔH) values (~8.5 ± 0.8 summer and ~8.7 ± 1.5 kcal/mol winter) were consistent with previous ΔH data reported for bear Hb, with values ranging from ~7 to ~8.5 kcal/mol (6, 11). Temperature sensitivity of O_2 binding to Hb was overall similar in summer and winter hemolysates, indicating that a fall in body temperature alone is necessary but not sufficient for the decrease in P_{50} of hibernating bear hemolysates. We found that a significant part of the observed shift of the O_2 equilibrium curve in hibernating bears is due to a decrease in red blood cell DPG levels (Figs. 2 and 3). No indication of switch in Hb expression with synthesis of new isoHb components with a higher O_2 affinity was found in the brown bears (Fig. 1).

By binding to a specific site (including His2β, Lys82β, and His143β in bear Hbs) in the central cavity of the T-state conformation, DPG is a potent allosteric cofactor of brown bear Hb acting synergistically with Cl$^-$ ions (11). The overall effect of a DPG decrease is an increase in the Hb-O_2 affinity and a decrease in cooperativity. These effects are explained by a destabilized T state due to a decrease in the DPG to Hb tetramer ratio, with the consequent shift of the T-R equilibrium toward the high-affinity R state. We demonstrated that DPG is the allosteric cofactor responsible for the affinity changes, as these were reproducible when purified Hb and DPG were mixed in exactly the same ratios as found in summer and winter samples. In addition, higher DPG to Hb...
tetrameric ratios in summer bears (∼2:1) than in humans (∼1:1) may indicate some differences in the regulation of DPG as a red blood cell metabolite.

Calculations show that the hibernation-associated elevation in blood O₂ affinity and decrease in cooperativity of O₂ binding may be crucial for maintaining mixed venous O₂ at a physiologically reasonable level in spite of the strong elevation of Hct (2) (Fig. 4). In the case of an unaltered O₂ binding curve, the high Hct would have elevated winter PVO₂ substantially (Fig. 4) and cause a potentially detrimental increase in dissolved O₂. The same conclusion is reached when applying physiological data from hibernating and active brown bears under anesthesia (17), although the sedative and disturbance-induced elevation, particularly in the heart rate, poses limitations to their use. Interestingly, P50 values calculated from the whole blood saturation data of anesthetized winter and summer bears (19.7 and 32.1 torr, respectively) (17) also show a similar left-shifted O₂ binding curve during hibernation and confirm the results here obtained on diluted hemolysates.

In black bears during and after hibernation, evidence has been presented that changes in body temperature and metabolic rate expressed as rate of O₂ consumption are to a certain extent independent from each other (43). Bears emerging from their dens show a rapid recovery of their body temperature to normal levels, whereas their basal metabolic rate seems to remain suppressed and recovers only slowly. These findings indicate a strong temperature-independent remodeling of their metabolism during hibernation. Our results in brown bears further indicate that such remodeling may play a role in regulating Hb-O₂ binding during hibernation.

Perspectives and Significance

The physiology of brown bear hibernation is inherently intriguing as bears seem less dependent on reductions in body temperature to aid metabolic regulation compared with other (smaller) hibernators, but rather may rely more heavily on active aerobic metabolic suppression.

Here, we found indications that a side product of glycolysis, DPG, is substantially downregulated during hibernation, in effect increasing blood O₂ affinity substantially. The described changes in O₂ affinity and cooperativity of Hb-O₂ binding may be crucial for defending internal Po₂ during the hibernation period. Clearly, further studies will be needed to identify the mechanisms involved in metabolic suppression in hibernating bears and to establish whether the observed decrease in erythrocyte DPG, besides its role in adapting the blood O₂ equilibrium curve, is part of this metabolic remodeling. In this case, regulation of glycolytic enzymes upstream of DPG production by pH, temperature, or other factors could be involved. Such findings could be of relevance to identify pharmacological manipulation of energy metabolism that would preserve tissue integrity in critically ill human patients. Further studies on hibernators such as the brown bear may reveal details of how the substantial metabolic regulation is achieved.

ACKNOWLEDGMENTS

We thank the Scandinavian Bear Project for financial support, sample availability, and field logistics. We thank Roy Weber for useful comments and Anny Bang for technical assistance (Aarhus). This work was also funded by The Danish Council for Independent Research, Natural Sciences.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.

AUTHOR CONTRIBUTIONS

REFERENCES

