The ins and outs of angiotensin processing within the kidney

Bryan A. Wilson, Allyson C. Marshall, Ebaa M. Alzayadneh, and Mark C. Chappell

Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina

Submitted 30 April 2014; accepted in final form 10 June 2014

The kidney is a key target for the diverse components of the renin-angiotensin-aldosterone system that include prorenin/renin, angiotensin II (ANG II), ANG-(2–8) (ANG III), ANG-(1–7), ANG-(3–8), ANG-(1–9), and aldosterone (2, 3, 6, 10). The kidney also comprises an intrinsic renin-angiotensin system (RAS) particularly within the proximal tubule epithelium capable of producing bioactive peptides to activate their respective receptors (R) in a paracrine or autocrine manner (2, 6, 10). Currently, the renal RAS can be functionally partitioned into at least two arms based on the distinct processing enzymes and receptors that comprise the ANG II-AT1 receptor and ANG-(1–7)-AT7/Mas receptor arms that functionally oppose one another. The current review considers both extracellular and intracellular pathways that potentially govern the formation and metabolism of angiotensin peptides within the renal proximal tubules.

angiotensin II; angiotensin-(1–7); kidney; metabolism; peptidase; fetal programming

ACE2 efficiently metabolizes ANG II to ANG-(1–7) and may markedly alter the functional signature of the RAS (2). ACE2 is a monocarboxypeptidase that does not continue to metabolize ANG-(1–7) due to the COOH-terminal proline; however, ACE hydrolyzes the Ile^5-His^6 bond of ANG-(1–7) to form ANG-(1–5) (2). ACE inhibitors increase circulating levels of ANG-(1–7) by preventing the rapid metabolism of the peptide, as well as shifting the processing of ANG I to ANG-(1–7) by the endopeptidase nephrilysin (NEP) (2, 13, 14). All three enzymes are classified as metallopeptidases

Fig. 1. Proposed scheme for the extracellular and intracellular processing of angiotensin peptides within renal proximal tubules. Extracellular metallopeptidases, angiotensin-converting enzyme (ACE), ACE2, and nephrilysin (NEP) process ANG I to ANG II or ANG-(1–7) (ANG 7) that subsequently bind to receptors on the cell surface. Intracellular peptidases include thimet oligopeptidase (TOP) to process ANG I to ANG-(1–7) or ACE-independent (non-ACE) pathways such as chymase to form ANG II. An ANG-(1–7) endopeptidase (A7-EP) hydrolyzes the peptide to ANG-(1–4) (ANG 4); the peptide may be secreted for extracellular metabolism of ANG-(1–7) in addition to ACE-dependent metabolism of ANG-(1–7) to ANG-(1–5) (ANG 5). The precursor angiotensinogen (Aogen) may be internalized by the tubules from extracellular sources or arise from intracellular synthesis.
with membrane-anchoring domains that orient their active sites on the extracellular cell surface to process substrates within the glomerular filtrate, interstitial fluid, cerebrospinal fluid (CSF), or the blood (Fig. 1). These peptidases comprise the extracellular pathway for the formation of ANG II and ANG-(1–7) to subsequently bind to AT1R or AT2R on the cell surface and activate various signaling pathways (Fig. 1). ACE, ACE2, and NEP also contribute to the metabolism of both peptides to either inactive forms or, in the case of ANG-(1–7), a metabolite that functionally opposes the ANG II–AT1R axis (2, 13).

In addition to the extracellular processing of peptides, there is compelling evidence for the intracellular expression of both ANG II and ANG-(1–7) in the kidney and other tissues (1–8). The tissue expression of angiotensins may indeed lead to their subsequent release into the extracellular space; however, evidence of intracellular AT1R, AT2R, and AT-R may portend for the intracellular expression of both neurotensin, and apelin were not hydrolyzed by the enzyme and ANG I, whereas other peptides including bradykinin, to ANG-(1–4) was 10- to 20-fold higher than for ANG II and brain medulla of sheep (3, 9). The purified peptidase ANG-(1–7) to the inactive metabolite ANG-(1–4) in the CSF recent studies reveal a soluble endopeptidase that degrades both intracellular and extracellular pathways to enhance the “ANG-(1–7) to ANG II tone” that include reduced metabolism of ANG-(1–7) may provide additional renoprotection in diabetes, hypertension, and fetal programming events.

Perspectives and Significance

Functional partitioning of the RAS is facilitated in part through multiple peptidase pathways that occur downstream from the initial processing of angiotensinogen by renin and likely reflects their discrete cellular localization and relative affinities for peptides. Fetal glucocorticoid exposure is one example of in utero programming events that remarkably influence the RAS in adults through altered expression of distinct peptidase components in the kidney, circulation, and brain (3). Although additional characterization of the ANG-(1–7) endopeptidase regarding the enzyme’s specificity and regulation is warranted, therapeutic approaches that target both intracellular and extracellular pathways to enhance the “ANG-(1–7) to ANG II tone” that include reduced metabolism of ANG-(1–7) may provide additional renoprotection in diabetes, hypertension, and fetal programming events.

REFERENCES

