D1-like dopamine receptors downregulate Na\(^{+}\)-K\(^{+}\)-ATPase activity and increase cAMP production in the posterior gills of the blue crab *Callinectes sapidus*

Francis B. Arnaldo, Van Anthony M. Villar, Prasad R. Konkalmatt, Shaun A. Owens, Laureano D. Asico, John E. Jones, Jian Yang, Donald L. Lovett, Ines Armando, Pedro A. Jose, and Gisela P. Concepcion

1The Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines; 2Department of Pediatrics, Georgetown University School of Medicine, Washington, District of Columbia; 3Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland; 4Department of Biology, The College of New Jersey, Ewing, New Jersey; and 5Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland

The Atlantic blue crab, *Callinectes sapidus*, a euryhaline crustacean, must osmoregulate to survive in rapidly changing saline environments of estuarine habitats. It is considered to be a strong hyperosmoregulator that can maintain an almost constant hemolymph osmolality across a wide range of salinities (8). The change in Na\(^{+}\)-K\(^{+}\)-ATPase activity in the posterior gills, in response to changes in environmental osmolality, is one of several osmoregulatory mechanisms in euryhaline crustaceans (25, 33, 39, 43, 44). However, the regulatory pathways leading to modulation of Na\(^{+}\)-K\(^{+}\)-ATPase activity in posterior gills of euryhaline crustaceans are not fully understood.

Dopamine has been shown to increase the Na\(^{+}\)-K\(^{+}\)-ATPase activity in posterior gills of crustaceans through a cAMP-dependent pathway (36). Invertebrates have three subfamilies of dopamine receptors, i.e., 1) the DOP1 subfamily, which is related to vertebrate D1-like receptors; 2) the INDR subfamily, which is a distinct invertebrate group that functionally behaves like vertebrate D1-like receptors; and 3) the invertebrate D2-like receptor subfamily, which is related to vertebrate D2-like receptors (38). Specifically in crustaceans, there are two types of D1-like receptors, D1\(_{\text{APAN}}\) and D1\(_{\text{BAN}}\) (also termed D1\(_{\text{R}}\) and D2\(_{\text{R}}\) in humans, respectively). D1-like receptors stimulate, while D2-like receptors inhibit, adenylyl cyclase activity in vertebrates and invertebrates (6, 14). D1-like receptors have been pharmacologically characterized in the crustacean *Eriocheir sinensis* (36); however, the role of this receptor subtype in the regulation of Na\(^{+}\)-K\(^{+}\)-ATPase in response to changes in environmental osmolality is still unclear.

In mammals, there are currently two paradigms of the D1-like dopamine receptor effect on ion transport that act in opposite manner, depending on the cell type. In human lung epithelia, dopamine via D1-like dopamine receptors increases sodium transport by stimulating the rapid recruitment of Na\(^{+}\)-K\(^{+}\)-ATPase from cellular endosomes to the basolateral membrane (5). In the proximal and distal tubules of the mammalian kidney, however, dopamine decreases ion transport by acting on D1-like dopamine receptors to increase cAMP, which leads to the phosphorylation of Na\(^{+}\)-K\(^{+}\)-ATPase, resulting in its internalization and inactivation (2, 4, 9, 11, 22, 26). Altered arachidonic metabolism may result in the failure of dopamine to inhibit Na\(^{+}\)-K\(^{+}\)-ATPase (28). The objective of the current study was to test the hypothesis that D1-like receptors are expressed in the posterior gills of the euryhaline blue crab *C. sapidus* and function to increase cAMP production to ultimately regulate Na\(^{+}\)-K\(^{+}\)-ATPase activity.

MATERIALS AND METHODS

Animals. Male blue crabs in intermolt were collected from the Annapolis area and Hoopers Island, Chesapeake Bay, MD, between June-October and housed at 25°C in filtered recirculating tanks...
containing dilute (10 parts per thousand (ppt) salinity) or full-strength (33 ppt salinity) artificial seawater (Instant Ocean, Blacksburg, VA) (20). Crabs weighed between 110 and 230 g and had carapace widths from 11 to 15 cm. The crabs were fed once daily with a diet consisting of processed oysters and dried pellet food. The crabs were exposed to a 12:12-h light-dark photoperiod and, after exposure to dilute seawater for 6 days, examined before experimentation. This duration of exposure was adequate to stimulate the hypoosmotic response in the crabs and to upregulate expression of Na⁺-K⁺-ATPase in the epithelial cells of the gills (33).

Drug infusion. Crabs undergoing drug infusion were removed from the aerated tanks containing 10 ppt artificial seawater on day 5 of acclimation (32, 33), and a 2-mm hole was drilled through the carapace directly above the heart cavity, as described by Burnett et al. (7). The drill-bit was pressed onto the carapace to create a depression deep enough to allow needle-stick penetration but not cause any bleeding. Latex rubber and cyanoacrylate adhesive were used to cover the depression to prevent any hemolymph bleed out caused by the puncture. The crabs were allowed to recover for 24 h before the study. Subsequently, vehicle (137 mM NaCl, 3 mM KCl, 5 mM MgSO4, and 3 mM HEPES, pH 7.4) that is isosmotic with the crab’s hemolymph, with or without drugs (1 μM fenoldopam and 5 μM SCH23390), was infused directly (0.1 ml/min for 15 min) into the heart via an 18-gauge needle connected to an infusion pump. Initial experiments using lissamine green directly infused into the heart showed that the gills were fully perfused within 5 min. The fenoldopam (1 μM) and SCH23390 (5 μM) doses in our studies were based on studies in rats in which the drugs were infused directly into the renal artery (18, 53). These doses were lower than those used in the shore crab Chasmagnathus granulatus to avoid targeting other receptors, e.g., serotonin receptors (12, 35), which may occur when higher doses are used. The perfusion rate of 0.1 ml/min used was the same infusion rate used to perfuse the gills of C. granulatus (21). A drug infusion period of 15 min was chosen because the D1-like receptor was phosphorylated and internalized into the cell cytoplasm following 15 min of exposure to dopamine in human embryonic kidney cells heterologously expressing the rat D1R (41).

Whole gill homogenate. The crabs were anesthetized by being put in ice for 20 min and then killed by carapace removal. Gills 6 and 7 were excised to represent the anterior gills. The gills were blotted dry and homogenized in ice-cold buffer (250 mM sucrose, 2 mM EDTA, and 50 mM imidazole, pH 7.2) for Na⁺-K⁺-ATPase activity and cAMP accumulation via the Odyssey Imager (Li-COR, Lincoln, NE) and quantified by densitometric scan (Scion Images, Frederick, MD). Actin was used as the housekeeping protein. To determine the D1R epitope specificity, the immunoblots were incubated in antibody solution preincubated with or without the blocking peptide (cat. no. GTX77969; Genetex, San Antonio, TX). The company has not disclosed the immunogen sequence but revealed that a pairwise alignment of the sequence of the immunogen and that of Panulirus interruptus D1R (the closest known homolog) showed 28% sequence identity. Total cell lysates from HEK-293 cells heterologously expressing the human D1R and total gill homogenates from the spiny lobster P. interruptus that were supplemented with a protease inhibitor cocktail were used as positive controls.

Degenerate primers and RT-PCR. Forward degenerate primers were designed using the amino acid sequences YHIHKD (forward primer: 5'-tyatytcahtaagaar-3') of the D1-like receptors from the seven arthropods phylogenetically closest to the blue crab. Of these species, the crustacean P. interruptus is closest to the blue crab. Amino acid sequence alignment of D1R from Apis mellifera (NP_0011011595), Bombbyx mori (NP_0011084549), Anopheles darlingi (XP_315207), Ixodes scapularis (XP_002409287), Acrystosiphon pismum (XP_001947683), P. interruptus (DQ295971), and Penaeus monodon (JQ901712) showed that the sequence YHIHKD is highly conserved in the D1R of these seven species. Four reverse primers of equimolar concentration (1 μM) in combination with the forward primer (1 μM). The PCR products were resolved in 2% agarose gel and visualized under ultraviolet light after staining with ethidium bromide. The PCR amplicon was purified from the agarose gel and cloned into pCR4-TOPO cloning vector for further colony PCR and sequence analyses.

Immunostaining and confocal microscopy. Crabs were acclimated to 32 ppt salinity for 6 days before death and excision of gills 6 and 7. The gills were perfused with PBS then washed and stored in the histological fixative HistoChoice (AMRESCO, Solon, OH) for 3 days at 4°C. Four-millimeter-thick sections of the posterior gills were prepared for microscopy. For immunohistochemistry, the sections were incubated with either anti-D1R antibody or anti-Na⁺-K⁺-ATPase α-subunit antibody for 2 h at room temperature. After being washed with PBS, the sections were incubated with donkey anti-mouse and goat anti-rabbit secondary antibodies for 1 h at room temperature. The biotinylated secondary antibodies were visualized using the ABC complex kit (Pierce) and Vector VIP (Vector Laboratories, Burlingame, CA), counterstained with hematoxylin (Sigma-Aldrich), and viewed with a Nikon E600 digital microscope.

For confocal microscopy, the slides were double immunostained with rabbit anti-D1R antibody and mouse anti-Na⁺-K⁺-ATPase α-subunit antibody for 2 h at room temperature and probed with goat anti-rabbit (H+L)-Alexa Fluor 488 (Molecular Probes, Carlsbad, CA) and goat anti-mouse (H+L)-Alexa Fluor 568 (Molecular Probes) antibodies for 30 min. After being washed with PBS twice and distilled water once, the coverslips were mounted on glass slides using Vectashield mounting medium and sealed with nail polish. Negative
controls were likewise prepared but with the omission of the primary antibodies. Colocalization of D1βR and the Na\(^{+}\)-K\(^{+}\)-ATPase α-subunit was evaluated by laser scanning confocal microscopy, using an Olympus Fluoview FV300 inverted microscope using 450-nm excitation and 535-nm emission filters for Alexa Fluor 488- and 560-nm excitation and 645-nm emission filters for Alexa Fluor 568. Images were overlaid using Olympus Fluoview FV300 version 3C Acquisition Software to determine colocalization.

cAMP assay. Whole gill homogenates were pipetted into plate wells containing cAMP-specific rabbit antibody binding sites and competitive cAMP-acetylcholinesterase (AChe) conjugate (Cayman Chemical, Ann Arbor, MI). The plate was incubated overnight at 4°C in the dark for 2 h at room temperature. cAMP was quantified (412 nm) using a spectrophotometer (Thermofisher Scientific), cAMP content of the samples was calculated with known standards and expressed as picomoles of cAMP per milligram of protein.

Measurement of Na\(^{+}\)-K\(^{+}\)-ATPase activity. Na\(^{+}\)-K\(^{+}\)-ATPase activity was measured (26) in an incubation buffer containing 140 mM NaCl, 5 mM KCl, 5 mM MgCl\(_2\), 30 mM Tris-HCl, 1 mM EGTA, 3 mM Na\(_2\)ATP, and [γ-\(^{32}\)P]ATP (2–5 Ci/mmol) in tracer amounts (5 nCi/μl) using a 15-min incubation period at 37°C in the presence or absence of 2 mM ouabain, a Na\(^{+}\)-K\(^{+}\)-ATPase inhibitor. When ouabain was present, NaCl and KCl were omitted from the incubation buffer. The reaction was initiated by the addition of 10 μl of homogenate to 90 μl of incubation buffer. The reaction was terminated by the addition of activated charcoal/trichloroacetic acid and rapid cooling on ice. After 1 h, the samples were centrifuged for 4 min at 14,000 rpm to separate the charcoal that contained the unhydrolyzed nucleotide. Radioactivity present in the supernatant containing the inorganic [γ-\(^{32}\)P] produced by ATPase activity was measured in quadruplicate using a liquid scintillation spectrometer. Na\(^{+}\)-K\(^{+}\)-ATPase activity was calculated by subtracting the ouabain-insensitive ATPase activity from the total ATPase activity and expressed as millimoles of Pi per milligram of protein per hour.

Chemicals. Fenoldopam bromide and SCH23390 were purchased from Sigma-Aldrich. [γ-\(^{32}\)P]ATP was purchased from Perkin-Elmer Life Sciences. All other chemicals were obtained from Sigma-Aldrich.

Statistical analysis. Numerical data are expressed as means ± SE. Data were analyzed using SigmaStat (Systat Software). Unpaired Student’s t-test was used to compare two different experimental groups. One-way ANOVA followed by Holm-Sidak post hoc test was used to compare more than two experimental groups. Results were considered significant when P < 0.05.

RESULTS

Expression of D₁-like receptors in gills of the blue crab. Various in-house and commercially available antibodies against D₁-like dopamine receptors were tested on blue crab gill homogenates. A rabbit polyclonal antibody generated against the human D₃R (GeneTex antibody) was used on samples from HEK-293 cells stably expressing the human D₃R (HEK-hD₃R) and on gills from the spiny lobster (P. interruptus) and the blue crab (C. sapidus) (Fig. 1A). Three bands were visualized in the dark for 2 h at room temperature. cAMP was quantified (412 nm) using a spectrophotometer (Thermofisher Scientific), cAMP content of the samples was calculated with known standards and expressed as picomoles of cAMP per milligram of protein.
D1-LIKE DA RECEPTORS INHIBIT THE BLUE CRAB SODIUM PUMP

HEK-hD5R that correspond to glycosylated D5R (~125 kDa), native D3R (~55 kDa), and presumably degradation products (~30–35 kDa). In the lobster homogenate, three bands were visualized using the same antibody, i.e., ~125-kDa band, a faint 55-kDa band, and ~45-kDa band, and two bands were visualized in the blue crab homogenate, i.e., ~125- and 55-kDa band. An antibody raised against the lobster anti-D1BR (14) was able to visualize ~55- and ~30-kDa bands in the HEK-hD5R lysate, a single ~55-kDa band in the lobster homogenate, and ~120- and 55-kDa bands in the crab homogenate. All of these bands disappeared when the corresponding immunogen was added into the antibody solution. It is conceivable that the 55-kDa band in the crab homogenate, which was visualized using both the GeneTex and the anti-lobster antibodies, represents the crab D1BR, the homolog of the human D3R. We next evaluated the expression of D1BR in both anterior and posterior gills of the blue crab and found that it was expressed in both structures (Fig. 1B). The ~55-kDa band was not visualized when the immunizing peptide was added. RT-PCR of the cDNA prepared from the posterior gills amplified a predicted ~130-bp amplicon (Fig. 1C). Colony PCR and sequencing revealed that the cloned amplicon contained 125 base pairs (Fig. 1D). The amino acid sequence derived from the nucleotide sequence displayed 63 and 65% identity with corresponding regions of the D1BR from P. interruptus and P. monodon, respectively (Fig. 1E). These results suggest that the D1-like receptor is expressed in the gills of the blue crab and shares structural similarities with the arthropod and the rodent D1BR and the human D3R (6, 14).

The D1BR expression in the posterior gills was not different between crabs that were transferred to dilute seawater (10 ppt salinity) and crabs in full-strength seawater (32 ppt salinity) for 6 days (96 ± 6 vs. 100 ± 5%, respectively; Fig. 2).

Localization of the D1-like receptor and Na+–K+–ATPase α-subunit in gills of the blue crab. Immunohistochemistry of the posterior gills showed positive staining for both Na+–K+–ATPase α-subunit (Fig. 3A) and a D1BR (Fig. 3, B and C) in cells in the osmoregulatory patch along the central stem of the posterior gills. Staining for both proteins was more evident closer to the central stem compared with the outer edge of the lamellae. The Na+–K+–ATPase α-subunit staining was primarily in the basolateral membrane (Fig. 4A), while the D1-like dopamine receptor staining was in the basolateral membrane, as well as the cytoplasm (Fig. 4C). The normal morphology of the posterior gills is shown in the negative control images.
(Fig. 4, B and D). The cells found at the osmoregulatory patch are larger than the other cells in the posterior gills. These cells also have substantially more mitochondria and possess most of the Na\(^{+}\)-K\(^{+}\)-ATPase activity of the lamellae (15).

Confocal microscopy revealed colocalization of the Na\(^{+}\)-K\(^{+}\)-ATPase α-subunit and the D1BR at the basolateral membrane as well as the cellular junctions and was observed from the central stem to the tip of the lamellae (Fig. 5).

Effect of D\(_{1}\)-like receptor stimulation on D1BR and cAMP levels. Posterior gills of crabs infused with fenoldopam (15 min) showed a slight decrease in D1BR (55 kDa) compared with control (100 ± 1 vs. 87 ± 2%; \(P < 0.05\); Fig. 6). Infusion with fenoldopam significantly increased cAMP production, relative to vehicle infusion (42.2 ± 2.5, \(n = 4\), vs. 21.0 ± 3.2 pmol cAMP/mg protein). To show that the effect was due to D\(_{1}\)-like dopamine receptors, crabs were infused first with the D\(_{1}\)-like receptor antagonist SCH23390 for 15 min, followed by fenoldopam. SCH23390 abolished the stimulatory effect of fenoldopam (21.2 ± 5.5 pmol cAMP/mg protein). SCH23390 did not have a significant effect when infused alone (19.5 ± 1.9 pmol cAMP/mg protein; Fig. 7).

Na\(^{+}\)-K\(^{+}\)-ATPase activity in response to D\(_{1}\)-like receptor stimulation. Posterior gills of crabs infused with fenoldopam showed a significant decrease in Na\(^{+}\)-K\(^{+}\)-ATPase activity compared with vehicle infusion [fenoldopam = 13.3 ± 0.9 pmol protein\(^{-1}\)h\(^{-1}\) vs. vehicle (control) = 24.6 ± 1.9 pmol protein\(^{-1}\)h\(^{-1}\)] (Fig. 8). To show that the decrease in activity was due to D\(_{1}\)-like dopamine receptors, the D\(_{1}\)-like receptor antagonist SCH23390 was infused alone or with fenoldopam. The infusion of SCH23390 alone did not affect the activity of Na\(^{+}\)-K\(^{+}\)-ATPase (SCH23390 = 22.8 ± 1.2 pmol protein\(^{-1}\)h\(^{-1}\)) but abolished the decrease in the activity elicited by fenoldopam infusion (SCH23390 + fenoldopam = 23.4 ± 2.0 pmol protein\(^{-1}\)h\(^{-1}\)).

There were no differences in the ouabain-insensitive ATPase activity among the groups, indicating that the activity of ATPases other than Na\(^{+}\)-K\(^{+}\)-ATPase was similar in all groups (data not shown). Fenoldopam infusion did not produce any change in the expression of the Na\(^{+}\)-K\(^{+}\)-ATPase α-subunit (Fig. 9), indicating that the decrease in Na\(^{+}\)-K\(^{+}\)-ATPase activity was not related to the decreased expression of the protein.

Fig. 5. Colocalization of Na\(^{+}\)-K\(^{+}\)-ATPase α-subunit and D1BR in posterior gills. Posterior gill sections of the blue crabs *C. sapidus* were immunostained for Na\(^{+}\)-K\(^{+}\)-ATPase α-subunit (Alexa 488, green) and D1BR (Alexa 568, red). Colocalization of both proteins is denoted by the yellow areas in the overlay image (bottom left). Differential interference contrast (DIC) images were also obtained to show the boundaries (bottom right). Colocalization was observed both in cells within the osmoregulatory patch and in cells near the tips of the lamellae. Scale bar = 50 um.

Fig. 6. Effect of fenoldopam on the expression of D1BR. Blue crabs (*C. sapidus*) in artificial seawater (10 ppt salinity) for 6 days were infused with vehicle plus fenoldopam or with vehicle alone (control). Posterior gills 6 and 7 were excised, and whole gill tissue homogenate was prepared, resolved via 10% SDS-PAGE, and probed with polyclonal D3R antibody and with goat anti-rabbit secondary antibody conjugated with horseradish peroxidase. Bands were visualized using chemiluminescence. Actin was used as housekeeping protein. Numerical data are expressed as means ± SE. Fenoldopam-infused crabs showed a small, but significant, decrease in expression compared with control (0.81 ± 0.02 vs. 0.74 ± 0.02, \(n = 5\)); see the corresponding bar graphs.
two novel techniques to study the physiological response of the Atlantic blue crab *C. sapidus*. When D₁-like dopamine receptors were stimulated with the D₁-like receptor agonist fenoldopam in intact crabs, the posterior gills responded with an increase in cAMP production and a decrease in Na⁺-K⁺-ATPase activity without a change in expression of its α-subunit. Previous studies have indicated the presence of a dopamine receptor in crustaceans (14, 21, 23, 37, 46). However, among crustaceans, it is only in the spiny lobster *P. interruptus* (SCH), a D₁/R/D₅R antagonist, which by itself had no effect, blocked the stimulatory effect of fenoldopam (SCH + Fen) on cAMP levels. *P* < 0.05 vs. all other treatments, one-way ANOVA followed by Holm-Sidak posttest, *n* = 3/treatment.

DISCUSSION

This study reports the presence of a D₁-like dopamine receptor, which is most likely the D₁βR, in the posterior gills of the Atlantic blue crab *C. sapidus*. When D₁-like dopamine receptors were stimulated with the D₁-like receptor agonist fenoldopam in intact crabs, the posterior gills responded with an increase in cAMP production and a decrease in Na⁺-K⁺-ATPase activity without a change in expression of its α-subunit. Previous studies have indicated the presence of a dopamine receptor in crustaceans (14, 21, 23, 37, 46). However, among crustaceans, it is only in the spiny lobster *P. interruptus* that two D₁-like receptors, the D₁αR and D₁βR, have been described so far (14). In this study, an ~55-kDa band was visualized in the gills, which conceivably corresponds to the crab D₁βR. RT-PCR on cDNA prepared from the posterior gills also indicated the presence of D₁βR transcript.

Compared with previous studies, the present study employed two novel techniques to study the physiological response of the dopamine receptor in the posterior gills of blue crabs. First, the experiments in the current study were performed on living crabs and not on isolated gills. It is difficult to examine the in vivo effects of perfused drugs in isolated gills of *C. sapidus* since properly securing a closed circuit system necessitates clamping of the base of the gill where a large portion of the ion transporting cells are located (1, 32). Second this study used a continuous drug infusion technique that allows for continuous bioavailability of the drug and a more stable pharmacokinetic profile (17, 49). In contrast, previous studies have employed the technique of administering a single bolus of a pharmacological agent into the crabs (37, 44, 45).

The dopamine receptor and the sodium pump colocalized along the basolateral membrane, especially in cells within the osmoregulatory patch. In addition to showing a potential for the interaction between the sodium pump and the dopamine receptor, these results suggest that the dopamine receptor may also play an important role in the regulation of sodium uptake in the posterior gills that may be associated with the osmoregulatory response. Acute treatment with the D₁-like receptor agonist fenoldopam resulted in a slight decrease in D₁βR expression, which may be an acute compensatory mechanism to osmoregulate in lower salinities. In addition, the decrease in expression may indicate receptor degradation, similar to what occurs in the mammalian system (31).

Previous studies in crustaceans have shown that the D₁αR (D₁R in mammals) is coupled to the stimulatory G protein Gₛα, while the D₁βR (D₁R in mammals) is coupled to stimulatory Gₛα and Gₛβγ, both of which increase cAMP production (14). In contrast, the D₂αPanR, a D₂-like dopamine receptor, is coupled to inhibitory Gₛβγα, which decreases cAMP production (13, 14). Thus changes in the level of intracellular cAMP can be used to monitor the physiological response of the dopamine receptors upon agonist activation. In the current study, the stimulation of the D₁-like receptors using fenoldopam led to an increase in cAMP production, indicating that the D₁-like receptor was functional and that its signal transduction pathway was intact in the posterior gills.

Treatment with fenoldopam led to a decrease in Na⁺-K⁺-ATPase activity without a concomitant change in the expression of the Na⁺-K⁺-ATPase-α-subunit expression. The Na⁺-K⁺-ATPase expression data suggest that the decrease in activity was not due to the degradation of the transporter but rather to an alteration of the intrinsic conformation of the sodium pump, resulting in its internalization and inactivation. It is conceivable that the activation of Na⁺-K⁺-ATPase observed in previous studies using high concentrations of dopamine,
fenoldopam, and SCH23390 is not due to the activation of the D₁-like dopamine receptors alone but to the concomitant activation of other receptors, e.g., serotonin receptors (vide infra). The role of D₂-like receptors in the osmoregulation of euryhaline crabs should be also considered because it has been shown that the perfusion of their posterior gills with sipperone and domperidone, two potent D₂-like dopamine receptor antagonists, blocked the ability of dopamine to increase the transepithelial potential difference (21). Previous studies have mostly used the natural ligand for the dopamine receptors, dopamine, as agonist; hence, the activation of the D₂-like dopamine receptors is likely to occur in this context since dopamine is able to activate Gαs, Gαq, and Gα11 in crustaceans (13, 14). Under certain circumstances, the mammalian D₃R, a D₂-like dopamine receptor, can be linked to Gαq (40). Thus it is possible that an increase or a decrease in cAMP can ensue after dopamine activation, depending on which cascade dominates the response. However, what regulates the eventual response must be determined.

Previous studies have shown that an increase in cAMP production in the osmoregulatory gills of euryhaline crustaceans is associated with an increase in Na⁺-K⁺-ATPase activity and a transient activation followed by a subsequent inhibition of transepithelial potential difference (21, 23, 44). These authors suggested that the transient increase in cAMP content was responsible for Na⁺-K⁺-ATPase stimulation. However, direct proof of this hypothesis has not been forthcoming. It would be interesting to determine whether D₁- and D₂-like receptors interact in the regulation of Na⁺-K⁺-ATPase in crustacean gills. This occurs in mammalian renal tubule cells under conditions of moderate extracellular fluid expansion, where the D₂-like receptors act synergistically with the D₁-like receptors to increase sodium excretion by inhibiting Na⁺-K⁺-ATPase activity (3, 16, 29).

In mammals, higher concentrations of dopamine can activate nondopamine receptors, e.g., serotonin and adrenergic receptors. There are studies showing that D₁-like receptor drugs, such as fenoldopam and SCH23390, have high affinities for serotonin receptors (12, 35), a possibility with the high concentrations (10 μM) used in previous reports. Several crustacean serotonin receptors, which also increase cAMP production upon stimulation, have been reported in the somatogastric ganglion but not in the gills; these crustacean serotonin receptors are not pharmacologically similar to vertebrate serotonin receptors (14, 46, 47). Octopamine (OA), a biogenic monoamine structurally related to norepinephrine, acts as a neurotransmitter, neuromodulator, and neurotransmitter in invertebrates, including the crustaceans. Activation of the OA receptors, which are similar to the mammalian adrenergic receptors, also invariably results in increased cAMP levels (42). These receptors, if proven to be present in the posterior gills, could conceivably account for the previous observations subsequent to the treatment with dopamine.

Perspectives and Significance

In summary, we have provided evidence for the presence of dopamine receptors, presumably the D₁BR, which colocalize with the Na⁺-K⁺-ATPase at the basolateral membrane of the cells that populate the osmoregulatory patch of the posterior gills of the blue crab. While we have shown that agonist stimulation of these receptors resulted in diminished receptor abundance, increased cAMP production, and decreased sodium transport via the inhibition of Na⁺-K⁺-ATPase activity, the details of the molecular mechanisms involved in this process have yet to be established. The inhibition of Na⁺-K⁺-ATPase activity by the D₁-like dopamine receptors appears to have been conserved in phylogenetically distinct organisms. In mammalian renal tubule cells under conditions of moderate sodium excess, the D₁-like dopamine receptors are responsible for decreasing renal sodium transport by at least 50% (10, 18, 24, 50, 51). Mammalian renal tubule cells can adapt in an environment of low (50 mosmol/kgH₂O) to high osmolality (1,200 mosmol/kgH₂O) (30), similar to conditions to which euryhaline crustaceans are exposed during their migration from low- to high-salinity water. TonEBP (30), which plays an important role in the renal tubular response to hypertonicity, stimulates the renal proximal tubule production of dopamine (27). A blueprint for the regulation of sodium transport in specialized tissues is shared by various organisms belonging to various phyla; however, unique variations in terms of novel interacting proteins or novel functions for the same protein exist to allow the organisms to thrive in their own biological niche. It would be interesting to determine if the D₁- and D₂-like receptors interact in the regulation of Na⁺-K⁺-ATPase in crustacean gills and establish the cross talk between dopamine and other hormones in osmoregulation. Understanding the underlying mechanisms may shed light on the evolution of the pathways involved in ionic and osmotic regulation.

ACKNOWLEDGMENTS

We thank Dr. Deborah J. Baro, Georgia State University, for the rabbit anti-lobster dopamine receptor antibodies and immunizing peptides that were used to verify the crab D₁BR.

GRANTS

This work was supported in part by National Institutes of Health Grants R01-HL-092196, R37-HL-023081, R01-DK-090918, and R01-DK-039308.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

REFERENCES

D1-LIKE DA RECEPTORS INHIBIT THE BLUE CRAB SODIUM PUMP

