Low O₂-induced ATP release from erythrocytes of humans with type 2 diabetes is restored by physiological ratios of C-peptide and insulin

Jennifer P. Richards, Gina L. C. Yosten, Grant R. Kolar, Cory W. Jones, Alan H. Stephenson, Mary L. Ellsworth, and Randy S. Sprague

Department of Pharmacological and Physiological Science, Saint Louis University, St. Louis, Missouri

Submitted 15 May 2014; accepted in final form 24 July 2014

Richards JP, Yosten GL, Kolar GR, Jones CW, Stephenson AH, Ellsworth ML, Sprague RS. Low O₂-induced ATP release from erythrocytes of humans with type 2 diabetes is restored by physiological ratios of C-peptide and insulin. Am J Physiol Regul Integr Comp Physiol 307: R862–R868, 2014. First published July 30, 2014; doi:10.1152/ajpregu.00206.2014.—ATP release from erythrocytes in response to reduced oxygen (O₂) tension stimulates local vasodilation, enabling these cells to direct perfusion to areas in skeletal muscle in need of O₂. Erythrocytes of healthy humans with type 2 diabetes do not release ATP in response to low O₂. Both C-peptide and insulin individually inhibit low O₂-induced ATP release from healthy human erythrocytes, yet when coadministered at physiological concentrations and ratios, no inhibition is seen. Here, we determined: that 1) erythrocytes of healthy humans respond to C-peptide and insulin at physiological ratios; 2) residual C-peptide levels reported in humans with type 2 diabetes are not adequate to rescue low O₂-induced ATP release in the presence of 1 nM insulin, and 3) the effects of C-peptide and insulin are neither altered by increased glucose levels nor explained by changes in erythrocyte deformability. These results suggest that the addition of C-peptide to the treatment regimen for type 2 diabetes could have beneficial effects on tissue oxygenation, which would help to ameliorate the concomitant peripheral vascular disease.

ERYTHROCYTES RELEASE OXYGEN (O₂), as well as the potent vasodilator ATP, when exposed to low O₂ tension, enabling these circulating cells to contribute to the efficient matching of O₂ supply to metabolic need in skeletal muscle (5, 11, 13, 14, 30, 33, 43). This release of ATP stimulates local vasodilation, which is conducted upstream to feed arterioles, thereby directing perfusion to localized tissue areas lacking adequate oxygenation (11, 13, 43). However, erythrocytes from humans with type 2 diabetes exhibit an impairment in the ability to release ATP in response to reduced tissue O₂ tension, which limits their participation in this important mechanism for the control of perfusion distribution (38, 42, 44).

Type 2 diabetes is associated with an increased incidence of vascular complications, including peripheral vascular disease and impaired wound healing (2, 15, 36). Impairment of low O₂-induced ATP release from erythrocytes could contribute to these complications. In support of this hypothesis, it was reported that isolated skeletal muscle arterioles perfused with erythrocytes from healthy humans—cells that respond to low O₂ with ATP release—dilate when exposed to reduced, extraluminal O₂, a model of increased tissue O₂ need (11, 43). In contrast, low O₂-induced ATP release from erythrocytes from humans with type 2 diabetes is severely impaired (38, 42, 44), and these cells do not stimulate dilation of isolated, perfused skeletal muscle arterioles under similar conditions (42).

Whereas there is clearly an inherent defect in low O₂-induced ATP release from erythrocytes of humans with type 2 diabetes, this can be exacerbated further by the treatment of the disease. Specifically, incubation of healthy human erythrocytes with insulin alone, at concentrations reported to be necessary to regulate blood glucose levels in individuals with insulin resistance, inhibits low O₂-induced ATP release (19).

Although insulin alone is administered to humans with type 2 diabetes, in vivo, insulin is released from the pancreas, along with the connecting peptide (C-peptide) (46). The two peptides are released at equimolar concentrations, but due to differing clearance rates, circulating C-peptide levels exceed those of insulin (46). Although initially thought to be inert, recent studies have shown that C-peptide has biological activity (21, 22) and has been suggested to attenuate and perhaps reverse some diabetes-associated microvascular complications (22).

C-Peptide may also have important effects on erythrocytes. It has been shown in humans with type 1 diabetes that C-peptide improves erythrocyte deformability (18, 27). In addition, when coincubated with insulin at physiological ratios and concentrations, C-peptide has been shown to oppose the adverse effects of insulin on low O₂-induced ATP release from healthy human erythrocytes (34). Although the signaling pathway(s) initiated by C-peptide are not well characterized, there is strong evidence that C-peptide stimulates a pertussis toxin-sensitive G-protein-coupled receptor (GPCR) (21). Recently, GPR146, an orphan GPCR, was suggested to be a C-peptide receptor on KATOIII cells, based on the loss of C-peptide-stimulated cFos expression after small interfering RNA (siRNA) knockdown of GPR146 (50).

Here, we investigated the hypotheses: that 1) erythrocytes of healthy humans and humans with type 2 diabetes possess GPR146; 2) this receptor mediates the effects of C-peptide on ATP release from human erythrocytes; and 3) physiological ratios of C-peptide and insulin rescue the ability of erythrocytes from humans with type 2 diabetes to release ATP when exposed to reduced O₂ tension.

METHODS

Isolation of human erythrocytes. Blood was obtained from healthy volunteers (n = 23) or individuals with type 2 diabetes (n = 25) via venipuncture, using a syringe containing heparin (500 U). Blood was centrifuged at 500 g at 4°C for 10 min, and the plasma,uffy coat, and
uppermost layer of erythrocytes were removed by aspiration. The remaining erythrocytes were resuspended and washed three times in a physiological buffer containing (in mM) 21.0 Tris, 4.7 KCl, 2.0 CaCl₂, 140.5 NaCl, 1.2 MgSO₄, 5.5 glucose, and 0.5% BSA with the pH adjusted to 7.4. After the final wash, the hematocrit of the isolated erythrocytes was measured. Erythrocytes were prepared on the day of use. Informed consent was obtained from all subjects, and the protocol for blood removal was approved by the Institutional Review Board of Saint Louis University.

Measurement of ATP. ATP was measured using the luciferin-luciferase assay. A 200-µl sample of the erythrocyte suspension (0.04% hematocrit) was injected into a cuvette containing 100 µl firefly lanthanum extract (10 mg/ml distilled water, FLE-250; Sigma, St. Louis, MO) and 100 µl D-luciferin solution (10 mg/20 ml distilled water; Research Products International, Mount Prospect, IL). The light emitted from the reaction with ATP was quantified using a luminometer (TD-20-20; Turner Designs, Sunnyvale, CA). A standard curve was generated for each experiment. ATP values were normalized to the amount released from 4 × 10⁶ cells.

Measurement of free hemoglobin. To exclude the possibility that amounts of ATP measured were the result of erythrocyte lysis, samples used for measuring ATP were centrifuged at 500 g for 10 min at room temperature. The presence of hemoglobin in the supernatant was determined by measurement of light absorbance at 405 nm (23). Samples in which free hemoglobin increased were not included.

Purification of erythrocyte membranes. Washed erythrocytes were diluted 1:100 with ice-cold hypotonic buffer containing 5 mM Tris-HCl, 2 mM EDTA, pH 7.4, and stirred vigorously at 4°C for 20 min. The lysate was centrifuged at 23,000 g for 15 min at 4°C. The supernatant was removed and discarded. The pellet was washed with ice-cold buffer and centrifuged, and the procedure was repeated a second time. The membranes were frozen at −80°C. Protein concentrations were determined using the BCA Protein Assay (Pierce, Thermo Fisher Scientific, Rockford, IL).

Western analysis. Erythrocyte membranes were suspended in buffer containing 150 mM NaCl, 50 mM Tris, pH 8.0, 1% Nonidet P-40, followed by centrifugation to remove insoluble debris. The resulting supernatant was loaded on a 4–20% gradient Tris-glycine precast PAGE gel (Bio-Rad Laboratories, Hercules, CA) at the same protein concentration. Membrane fractions at 100 V was carried out for 45 min in an SDS–Tris-glycine running buffer. Proteins were transferred to a polyvinyldene difluoride membrane (Bio-Rad Laboratories) using ice-cold 1× Towbin’s transfer buffer [25 mM Tris, 192 mM glycine, 20% (vol/vol) methanol (pH 8.3)] for 1 h at 60 mA. The membrane was blocked overnight in Tris-buffered saline (TBS) with 0.5% BSA with agitation at 4°C. Primary antibody incubation was with a rabbit polyclonal antibody to GPR146 (G299; Assay Biotechnology, Cambridge, MA) or with a 1:200 dilution (final 0.0055 mg/ml) of whole rabbit IgG (Jackson Immunoresearch). Slides were subsequently rinsed 3× in TBS and incubated for 45 min at room temperature with a donkey polyclonal antibody to rabbit IgG conjugated to horseradish peroxidase (Jackson ImmunoResearch). Slides were washed in TBS ×3 and incubated with ImmPACT DAB (Vector Laboratories, Burlingame, CA), counterstained with Hematoxylin QS (Vector Labs), dehydrated, and mounted with covergrips. Light microscopy was performed on a Leica DM1000 (Leica Microsystems, Buffalo Grove, IL), fitted with a Canon EOS T1 camera (Canon USA, Melville, NY). Postprocessing for color balance (globally applied for white-point correction) and resizing (globally applied) was performed using Pixelmator (Vilnius, Lithuania).

Determination of ATP release from erythrocytes in response to reduced O₂ tension in the presence and absence of C-peptide and insulin. Isolated erythrocytes were diluted to a 20% hematocrit in tonometer buffer (4.7 mM KCl, 2.0 mM CaCl₂, 140.5 mM NaCl, 1.2 mM MgSO₄, 5.5 mM glucose, 24.8 mM NaHCO₃, 5.5 mM dextrose, 0.5% BSA, pH 7.4) at 37°C and equilibrated for 30 min in a thin-film tonometer (model DEQ1; Cameron Instruments, Guelph, Ontario, Canada) with gas containing 15% O₂, 6% carbon dioxide (CO₂), and balance nitrogen (N₂) [normoxia, partial pressure of O₂ (PO₂) = 110 ± 5 mmHg]. ATP levels were then determined.

The erythrocytes were then exposed to reduced O₂ with gas containing 0% O₂, 6% CO₂, and balance N₂ (low O₂; PO₂ = 15 ± 5 mmHg) for 10 min, with ATP levels again determined. The effect of a 20-min pretreatment of erythrocytes with insulin (1 nM; Humalog U-100; Eli Lilly, Indianapolis, IN) and C-peptide (0.4, 1, 4, or 6 nM; human; amino acid sequence 55–89; 97.4% pure by HPLC analysis; Sigma) on low O₂-induced ATP release was determined. In separate studies, the effect of coadministration of C-peptide and insulin at a 1:1 ratio on low O₂-induced ATP release was determined in the presence of high glucose (16.5 mM).

Determination of ATP release from erythrocytes exposed to reduced O₂ tension in the presence of C-peptide or insulin after preincubation with an antibody to an external epitope of GPR146. Isolated erythrocytes were diluted to a 20% hematocrit in tonometer buffer (described above) at 37°C and incubated with 10 µl or 30 µl GPR146 antibody (rabbit polyclonal: ab117104; 1 mg/ml; Abcam). These erythrocyte suspensions were equilibrated for 30 min in a thin-film tonometer with gas containing 15% O₂, 6% CO₂, and balance N₂ (normoxia, PO₂ = 107 ± 3 mmHg) before the addition of 1 nM C-peptide or 1 nM insulin. After 20 min, ATP levels were measured. The erythrocytes were then exposed to reduced O₂ with gas containing 0% O₂, 6% CO₂, and balance N₂ (low O₂; PO₂ = 16 ± 4 mmHg) for 10 min with ATP levels measured again.

Measurement of erythrocyte deformability. Erythrocyte deformability was measured using the St. George’s blood filter system (Carri-Med, Dorking, UK) (39–41). This device develops a calibrated pressure gradient across a vertically mounted, 13-mm diameter polycarbonate filter (Nucleopore) with 9.53 mm exposed surface diameter and average pore size of 5.0 µm. Proximal to the filter, the inlet tube was filled with either buffer [in mM: 21.0 Tris(hydroxymethyl)amino- methane, 4.7 KCl, 2.0 CaCl₂, 140.5 NaCl, 1.2 MgSO₄, 5.5 glucose, and 0.5% BSA, pH adjusted to 7.4 at 37°C] or buffer containing erythrocytes, diluted to a 10% hematocrit. The erythrocyte suspension or buffer alone was then passed through the calibrated filter, and the transit time was recorded. The ratio between the rate at which the erythrocyte suspension traversed the filter relative to that of buffer alone was used to determine the red (blood) cell transit time (RCTT). If average filter pore size and hematocrit are kept constant, then RCTT alone was used to determine the red (blood) cell transit time (RCTT).

A decrease in the RCTT indicates an increase in erythrocyte deformability. Measurements of erythrocyte deformability were made after a 20-min incubation with C-peptide (1 nM), insulin (1 nM), or a 1:1 ratio of C-peptide and insulin (1 nM each) or vehicle, saline.

Statistical analysis. Statistical significance was determined using an ANOVA. In the event that the F-ratio indicated that a change had occurred, a Fisher’s least significant difference test was performed to...
identify individual differences between groups. Results are reported as means ± SE. P < 0.05 was considered statistically significant.

RESULTS

Characteristics of the subjects. Individuals with type 2 diabetes were identified by physicians at Saint Louis University in the Endocrinology Clinic. A patient history was collected for each individual, including a detailed listing of current medications and the patient’s age. The degree of glycemic control in humans with type 2 diabetes was determined by measurement of hemoglobin A1C (HbA1C) at the time of blood removal (A1CNow+ device; Bayer, Sunnyvale, CA). The patients were not fasted before blood withdrawal. The subjects studied were healthy human volunteers (n = 23; 15 women, 8 men) and humans with type 2 diabetes (n = 25; 12 women, 13 men) with a mean age of 36 yr (range 18–64 yr) and 59 yr (range 31–82 yr), respectively. The average HbA1c of humans with type 2 diabetes in this study was 8.6% (70 mmol/mol) with a range from 5.6% to 15.3% (38–144 mmol/mol). Patients with type 2 diabetes were treated with multiple drugs in various combinations, including aspirin (n = 13), angiotension-converting enzyme inhibitors or angiotension receptor blockers (n = 16), β-adrenergic receptor blockers (n = 8), oral hypoglycemic agents (n = 14), insulin (n = 18), lipid-lowering drugs (n = 13), calcium channel blockers (n = 4), diuretics (n = 5), and the phosphodiesterase 3 (PDE3) inhibitor, cilostazol (n = 2). The nature of the patient’s illness precluded discontinuation of medications. Record-keeping was in compliance with Health Insurance Portability and Accountability Act regulations.

Western analysis of a C-peptide receptor. With the use of an antibody directed against an intracellular domain of human GPR146, a band of ~36 kDa, consistent with the molecular weight of the receptor, was identified in membranes of healthy human erythrocytes, as well as in the human erythroleukemia cell line, TF-1, and the human gastric tumor cell line, KATOIII (positive controls; Fig. 1A) (50). A similar band was detected in membranes of erythrocytes of humans with type 2 diabetes with HbA1c levels ranging from 5.6 to 15.3 (Fig. 1B). Additionally, immunohistochemistry, using an antibody directed to an external epitope of GPR146, demonstrated immunoreactivity confined to erythrocytes in tissue sections of several organs, including human kidney (Fig. 1C). No reactivity was observed in an isotype-matched control (Fig. 1D).

Effect of preincubation with a GPR146 antibody on low O2-induced ATP release in the presence of C-peptide or insulin. Preincubation of healthy human erythrocytes with the GPR146 antibody used in immunohistochemistry studies, which is directed to an external epitope of the receptor, attenuated C-peptide-mediated inhibition of ATP release in response to low O2 in a concentration-dependent manner (Fig. 2A). In contrast, the antibody had no effect on insulin-induced inhibition of low O2-induced ATP release (Fig. 2B).

Effect of physiological ratios of C-peptide and insulin on low O2-induced ATP release from erythrocytes of humans with type 2 diabetes. As depicted in Fig. 3, coincubation of erythrocytes of humans with type 2 diabetes, with a 1:1 or 4:1 ratio of C-peptide to insulin, restored the ability of these cells to release ATP in response to low O2. However, at a ratio of 6:1 (6 nM C-peptide to 1 nM insulin), low O2-induced ATP release was inhibited, as was reported previously with healthy human erythrocytes (34). ATP levels at normoxia did not differ among groups.

Residual C-peptide in humans with type 2 diabetes is insufficient to prevent the adverse effect of insulin on low O2-induced ATP release from erythrocytes. Individuals with type 2 diabetes who require insulin therapy have been reported to have circulating C-peptide levels of ~0.4 nM (9, 10, 20). We...
determined that 0.4 nM C-peptide is insufficient to restore low O₂-induced ATP release from erythrocytes of humans with type 2 diabetes in the presence of 1 nM insulin, a concentration of insulin that may be required for the treatment of type 2 diabetes (Fig. 4).

Effect of acute exposure to high glucose in the presence of C-peptide and insulin on low O₂-induced ATP release from erythrocytes. It was previously suggested that C-peptide-mediated increases in glucose entry into erythrocytes result in increased ATP release (28, 29). We determined that when the concentration of glucose is elevated threefold (16.5 mM, 300 mg/dl), a level that can be found in humans with type 2 diabetes, erythrocytes from healthy humans, and humans with type 2 diabetes demonstrated no change in low O₂-induced ATP release compared with that observed at a more physiological glucose concentration (5.5 mM, 100 mg/dl). The response to low O₂ was not altered in the presence of C-peptide and insulin at a 1:1 ratio (1 nM of each peptide) and did not vary significantly from healthy human controls (Fig. 5). ATP levels did not differ among groups, irrespective of glucose concentration.

Influence of C-peptide and/or insulin on deformability of erythrocytes. Incubation of erythrocytes from humans with type 1 diabetes with insulin or C-peptide has been shown to enhance erythrocyte deformability (12, 18). We determined that in our series of patients with type 2 diabetes, erythrocyte deformability was not decreased. Moreover, neither insulin nor C-peptide, either alone or in combination, had any effect on deformability of erythrocytes from healthy humans or humans with type 2 diabetes (Table 1).

DISCUSSION

The release of both O₂ and the potent vasodilator ATP from erythrocytes exposed to reduced O₂ tension contributes to the appropriate distribution of perfusion required for adequate tissue oxygenation in skeletal muscle (5, 11, 13, 43). Importantly, it has been reported that low O₂-induced ATP release from erythrocytes of humans with type 2 diabetes is severely impaired (38, 42, 44). Moreover, these cells do not stimulate dilation of isolated, perfused skeletal muscle arterioles exposed to reduced extraluminal O₂, a model of increased tissue O₂...
20 min while exposed to a gas mixture containing 15% O2, 6% CO2, and glucose (5.5 mM, 100 mg/dl) or with high glucose (16.5 mM, saline (control) or 1 nM C-peptide and 1 nM insulin in buffer with normal ncytes from HH (O2-induced ATP release (34). In contrast, coincubation of erythrocytes with either C-peptide or insulin alone inhibits low O2-induced inhibition of low O2-induced ATP release from erythrocytes. To determine that GPR146 is responsible for C-peptide-mediated effects on low O2-induced ATP release from erythrocytes, we preincubated healthy human erythrocytes with an antibody directed to an external epitope of GPR146 with the intent of blocking the interaction between C-peptide and the receptor. Antibodies directed against an extracellular receptor domain to block activity have been used successfully with other receptors (6, 26, 31). Here, we show that preincubation of healthy human erythrocytes with the GPR146 antibody attenuates C-peptide-mediated inhibition of low O2-induced ATP release in a concentration-dependent manner (Fig. 2). Importantly, preincubation with the antibody had no effect on insulin-induced inhibition of low O2-induced ATP release, indicating that the antibody did not act in a nonselective manner to stimulate low O2-induced ATP release. Taken together, these data provide strong evidence that GPR146 is a receptor responsible for C-peptide-mediated effects on low O2-induced ATP release from erythrocytes.

As reported previously, coinoculation of healthy human erythrocytes with C-peptide and insulin at physiological ratios and concentrations does not interfere with low O2-induced ATP release (34). Here, we report that coinoculation of erythrocytes from humans with type 2 diabetes with physiological ratios of 1:1 and 4:1 (C-peptide to insulin) rescues low O2-induced ATP release (Fig. 3). However, coinoculation of erythrocytes from humans with type 2 diabetes with a 6:1 ratio of C-peptide to insulin does not. Thus the maintenance of physiological ratios and concentrations of these peptides is critical for the rescue of low O2-induced ATP release from erythrocytes of humans with type 2 diabetes. It must be recognized that although the patients were on a variety of treatment regimens, including in two cases, the PDE3 inhibitor cilostanol, the inability to release ATP in response to low O2 and the rescue of that function by C-peptide were seen in all type 2 diabetes patients, regardless of their medications.

Although pancreatic release of insulin and C-peptide can be compromised severely in type 2 diabetes, some individuals need (42). Restoration of ATP release from these erythrocytes in response to this physiologically important stimulus could provide a novel approach for the prevention and treatment of the microvascular disease associated with type 2 diabetes.

Recently, it was shown that incubation of healthy human erythrocytes with either C-peptide or insulin alone inhibits low O2-induced ATP release (34). In contrast, coinoculation of C-peptide with insulin, at physiological ratios and concentrations of the two peptides, did not inhibit this important physiological response (34). Since C-peptide and insulin are co-released in vivo, neither peptide would be anticipated to circulate alone in healthy humans (46). However, humans with type 2 diabetes who do not release sufficient insulin to regulate blood glucose are treated with insulin but not with C-peptide. Therefore, erythrocytes of humans with type 2 diabetes have both an inherent defect in low O2-induced ATP release (38, 42, 44) and are exposed to levels of insulin that in the absence of C-peptide, inhibit ATP release in response to this stimulus (19).

Table 1. Effect of either 1 nM C-peptide or 1 nM insulin or both peptides at a 1:1 ratio (1 nM) on deformability, as measured by RCTT

<table>
<thead>
<tr>
<th>Sample</th>
<th>RCTT (μs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH control</td>
<td>9.00 ± 0.16</td>
</tr>
<tr>
<td>HH C-peptide</td>
<td>9.09 ± 0.23</td>
</tr>
<tr>
<td>HH insulin</td>
<td>8.76 ± 0.16</td>
</tr>
<tr>
<td>HH 1:1 (C-peptide + insulin)</td>
<td>8.40 ± 0.11</td>
</tr>
<tr>
<td>DM2 control</td>
<td>9.18 ± 0.18</td>
</tr>
<tr>
<td>DM2 C-peptide</td>
<td>9.59 ± 0.45</td>
</tr>
<tr>
<td>DM2 insulin</td>
<td>9.19 ± 0.43</td>
</tr>
<tr>
<td>DM2 1:1 (C-peptide + insulin)</td>
<td>8.70 ± 0.46</td>
</tr>
</tbody>
</table>

RCTT, red (blood) cell transit time; HH, healthy human; DM2, type 2 diabetes. Values are means ± SE.
C-peptide and insulin restore RBC ATP release

Perspectives and Significance

Restoration of low O2-induced ATP release from erythrocytes from humans with type 2 diabetes would re-establish an important contributor to the local control of perfusion distribution, resulting in the adequate delivery of O2 to skeletal muscle. This hypothesis is supported by reports that confusion of C-peptide with even a subphysiological concentration of insulin (1 μU/ml) induced concentration-dependent vasodilation in isolated skeletal muscle arterioles and returned coronary flow to normal levels in a type 1 diabetes rat model (24, 32). The results presented here suggest that the addition of C-peptide to the treatment regimen for type 2 diabetes could have beneficial effects on blood flow distribution in skeletal muscle (11, 34), which could be useful in the prevention and/or treatment of the peripheral vascular disease associated with type 2 diabetes.

ACKNOWLEDGMENTS

The authors thank J. L. Sprague for inspiration. The authors also thank E. A. Bowles of Saint Louis University for technical support and assistance in reviewing this manuscript.

GRANTS

Support for this study was provided by grants from the American Heart Association (13PRE16980043) and the American Diabetes Association (BS-150).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.

AUTHOR CONTRIBUTIONS

REFERENCES

C-PEPTIDE AND INSULIN RESTORE RBC ATP RELEASE

