The effect of spinal cord injury on the neurochemical properties of vagal sensory neurons

April N. Herrity,1,2 Jeffrey C. Petruska,1,2,3 David P. Stirling,2,3,4 Kristofer K. Rau,1,2,5 and Charles H. Hubscher1,2

1Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky; 2Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky; 3Department of Neurological Surgery, University of Louisville, Louisville, Kentucky; 4Department of Microbiology & Immunology, University of Louisville School of Medicine, Louisville, Kentucky; and 5Department of Anesthesiology, University of Louisville, Louisville, Kentucky

Submitted 27 October 2014; accepted in final form 1 April 2015

Herrity AN, Petruska JC, Stirling DP, Rau KK, Hubscher CH. The effect of spinal cord injury on the neurochemical properties of vagal sensory neurons. Am J Physiol Regul Integr Comp Physiol 308: R1021–R1033, 2015. First published April 8, 2015; doi:10.1152/ajpregu.00445.2014.—The vagus nerve is composed primarily of nonmyelinated sensory neurons whose cell bodies are located in the nodose ganglion (NG). The vagus has widespread projections that supply most visceral organs, including the bladder. Because of its nonspinal route, the vagus nerve itself is not directly damaged from spinal cord injury (SCI). Because most viscera, including bladder, are dually innervated by spinal and vagal sensory neurons, an impact of SCI on the sensory component of vagal circuitry may contribute to post-SCI visceral pathologies. To determine whether SCI, in male Wistar rats, might impact neurochemical characteristics of NG neurons, immunohistochemical assessments were performed for P2X3 receptor expression, isocitulin B4 (IB4) binding, and substance P expression, three known injury-responsive markers in sensory neuronal subpopulations. In addition to examining the overall population of NG neurons, those innervating the urinary bladder also were assessed separately. All three of the molecular markers were represented in the NG from noninjured animals, with the majority of the neurons binding IB4. In the chronically injured rats, there was a significant increase in the number of NG neurons expressing P2X3 and a significant decrease in the number binding IB4 compared with noninjured animals, a finding that held true also for the bladder-innervating population. Overall, these results indicate that vagal afferents, including those innervating the bladder, display neurochemical plasticity post-SCI that may have implications for visceral homeostatic mechanisms and nociceptive signaling.

SPINAL CORD INJURY (SCI) results in deficits to sensorimotor systems and profoundly affects the functionality of the autonomic nervous system. Basic research focusing on improving pelvic-visceral outcomes following SCI is of great clinical importance, since complications such as bladder, bowel, and sexual dysfunction affect health and quality of life for this population (4, 47, 67). Despite the direct immediate impact of injury to the spinal-derived autonomic supply of the pelvic viscera, most of the body’s visceral organs also are supplied by a nonspinal source through the vagus nerve. Since the vagus nerve does not travel directly through the spinal cord, its neurocircuitry is often considered intact following SCI. Nevertheless, there is some degree of indirect involvement of both vagal afferents and efferents. For example, following SCI, subsequent neuroplastic-responsive changes have been extensively described within the dorsal vagal complex controlling gastric function (79). Gastrointestinal (GI) alterations after human upper-thoracic SCI include conditions such as dysphagia (160), esophagitis (133), peptic ulcerations (62, 138), gastroparesis, and overall dysmotility (87, 123, 125, 159). Although the mechanisms of GI dysfunction in humans after SCI are not thoroughly understood, experimental studies in rats suggest that many of the delays in gastric emptying and transit may, in part, be attributed to vagally mediated pathways (60, 61, 79, 140). In fact, subdiaphragmatic vagotomy has been shown to prevent much of the SCI-induced GI sequelae (61).

The vagus nerve, with sensory cell bodies primarily located in the nodose ganglia (NG), provides innervation to the thoraco-abdominal structures. Despite the view that the vagus nerve does not innervate visera caudal to the colon, numerous experimental studies have demonstrated that it also provides sensory innervation to the majority of the pelvic viscera (2, 28, 38, 57, 77, 81, 84, 111, 149). Even though the vagus nerve has such widespread projections, SCI does not disconnect the anatomical relationship the nerve has with the tissue it innervates. However, SCI does lead to pathological changes and dysfunction of below-level target organs, such as the bladder (45, 46, 94), and can thereby influence neuronal phenotype (122, 145, 158, 167, 176). Furthermore, various classes of primary sensory neurons, including vagal afferents, have been shown to alter their phenotype and the expression of different receptors in response to nerve injury and tissue inflammation (11, 78, 103, 107, 155, 173).

In this experiment, P2X3 receptor and substance P (SP) immunoreactivity (ir), as well as isocitulin B4 (IB4) binding were examined in NG neurons. These particular markers were selected based on their presence in the NG, involvement in the spinal and vagal circuitry, responsiveness in other sensory neurons to injury and/or inflammation, and the potential physiological role these markers may play in nociceptive signaling (11, 25, 30, 40, 42, 43, 83, 97, 103, 109, 146, 154, 163, 169, 172). In addition, anatomical evidence that the vagus nerve provides sensory innervation to the bladder in male rats (77) and the presence of these cellular markers in bladder tissue (6, 19, 100) add to the importance of understanding the relationship between target-organ tissue and its innervating neurons. It is, therefore, hypothesized that, following a spinal transaction injury, which removes any potential sources of spinal input rostrally and isolates vagal afferent fibers, the expression...
profile of known injury-responsive factors P2X3, IB4, and SP would be altered in the NG in general and also for the subset of NG neurons innervating the bladder.

MATERIALS AND METHODS

Animals. All experimental procedures were carried out according to National Institutes of Health guidelines and protocols reviewed and approved by the Institutional Animal Care and Use Committee at the University Of Louisville School of Medicine. All adult male Wistar rats (n = 16, Harlan Sprague-Dawley, Indianapolis, IN), ~250 g in weight, were individually housed in an animal room with a 12:12-h light and dark cycle. They had ad libitum access to water and food (Laboratory Rodent Diet). Groups were either naive (n = 8) or spinal cord injured (n = 8). Each group had a subset (n = 4 each) that received retrograde neural tracer injected into the bladder to enable identification of single NG neurons, which innervated the bladder.

SCI. One-half of the animals (n = 8) were anesthetized with a mixture of ketamine (80 mg/kg) and xylazine (10 mg/kg), injected intraperitoneally, for spinal transection. All surgeries were performed under aseptic conditions, and the body temperature was maintained within the range of 36–37°C via a warm water recirculator (Gaymar T/Pump, Gaymar Industries, Orchard Park, NY) throughout the surgery and recovery period. Following our laboratory’s previously published protocol (86), a dorsal longitudinal incision was made to expose the T7 vertebra, and a laminectomy was performed to expose the underlying T8 spinal cord. The overlying dura was reflected laterally, and the spinal cord cut using a pair of surgical microdissecting scissors. Gentle suction with an air vacuum was used to carefully elevate the cut stump to verify the completion of the lesion. Gelfoam (Pharmacia & Upjohn, Kalamazoo, MI) was soaked in topical hemostat solution (Henry Schein, Melville, NY) was placed in the lesion cavity. The incision was closed using 4-0 nylon suture for the muscle layers and fascia and surgical clips for the skin. Animals were given subcutaneous injections of ketoprofen (Ketofen, 2.5 mg/kg, Fort Dodge Animal Health, Fort Dodge, IA) for analgesia twice a day for 5 days to prevent bladder infections. After surgery, each animal was housed individually. The urinary bladder was emptied by manual crede every 8 h until the micturition reflex occurred automatically, typically 6–12 days after surgery (82). Animals survived for 6 wk, followed by euthanasia and tissue removal.

Retrograde tracer injection. At 5 wk postinjury, four spinally transected rats and four age-matched naive control rats were anesthetized with a mixture of ketamine (80 mg/kg) and xylazine (10 mg/kg). They received a ventral/caudal midline peritoneal incision to expose the urinary bladder, which was subsequently manually voided by pressure. Using an established protocol (77, 124), the fluorescent tracer FAST DiI oil (1,1’,3,3’,3’-tetramethylindocarbocyanine perchlorate, 5 mg dye dissolved in 0.1 ml methanol, Molecular Probes, Eugene, OR) was injected into the bladder wall with a dye-dedicated 33-gauge needle coupled to a Hamilton microsyringe (Laboratory Rodent Diet). Groups were either naive (n = 8) or spinal cord injured (n = 8). Each group had a subset (n = 4 each) that received retrograde neural tracer injected into the bladder to enable identification of single NG neurons, which innervated the bladder. Using an established protocol (77, 124), the fluorescent tracer was made to the circumference of the trigone, body, and nonspared tissue and extending from both the rostral and caudal spinal cord stumps. Area was determined for each ROI, and the percentage of spared tissue was calculated by dividing these areas (95). The Basso-Beattie-Bresnahan (BBB) scale (14), an open-field locomotor assessment, was used to evaluate hindlimb function as an assessment of postinjury spinal cord function. Each animal was placed in an open field and tested for 4 min by the same two scorers, who were presented with injured and noninjured animals in random order. The 21-point BBB score was the entire lesion cavity, encompassing both spared and nonspared tissue and extending from both the rostral and caudal spinal cord stumps. Area was determined for each ROI, and the percentage of spared tissue was calculated by dividing these areas (95).

Histology of the lesion epicenter. The lesion cavity, coated in embedding media, was cut into 18-μm sagittal sections using a Leica CM 1850 cryostat and mounted onto gelatin-coated histological slides (Aster Scientific, Morgantown, PA). The slides were then stained with both Luxol fast blue and cresyl violet (Kluver-Barrera method) to observe myelin and Nissl substance, respectively. Spot Advanced software (Diagnostic Instruments, Sterling Heights, MI) and the Nikon E400 microscope were used to image the lesion cavity and verify the completeness of the spinal transection (86). The percentage of spared white matter from the transection lesion was calculated using Nikon Elements software. The boundary between spared tissue at the ventral portion of the cord and the lesion cavity was identified. The first anatomical region of interest (ROI) outlined was the portion of spared tissue at the ventral aspect of the spinal cord, and the second ROI outlined was the entire lesion cavity, encompassing both spared and nonspared tissue and extending from both the rostral and caudal spinal cord stumps. Area was determined for each ROI, and the percentage of spared tissue was calculated by dividing these areas (95).

Hindlimb assessment for lesion completeness. The Basso-Beattie-Bresnahan (BBB) scale (14), an open-field locomotor assessment, was used to evaluate hindlimb function as an assessment of postinjury spinal cord function. Each animal was placed in an open field and tested for 4 min by the same two scorers, who were presented with injured and noninjured animals in random order. The 21-point BBB score was used to assess hindlimb coordination and rated parameters such as individual joint movements (0–7), weight support (8–13), and paw placement (14–21). Intact animals should demonstrate a locomotor score of 21. Animals that receive a complete TS transection have been shown to exhibit BBB scores of 3 (extensive movement of 2 joints) on average (13, 130). To prevent any functional connections across the lesion site from potential spared tissue, gelfoam was placed between the two cut stumps. It has been demonstrated that as little as 4–5% sparing (primarily in the ventrolateral funiculi) was sufficient for attaining a BBB score of 7 following “complete” spinal transection (no gelfoam used across lesion) (53).
Table 1. Immunohistochemical reagents

<table>
<thead>
<tr>
<th>Target</th>
<th>Primary Detection</th>
<th>Dilution/Vendor/Catalog No.</th>
<th>Secondary Detection</th>
<th>Dilution/Vendor/Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2X3</td>
<td>GP-anti-P2X3</td>
<td>1:1,000/Neuromics/GP10108</td>
<td>Dky anti-GP-AF488</td>
<td>1:100/Jackson/706-545-148</td>
</tr>
<tr>
<td>Biotinylated lectin from Bandeiraea</td>
<td>HRP-SA</td>
<td>1:500/Sigma-Aldrich/L2140</td>
<td>Tyramide-AF350</td>
<td>1:100/Molecular Probes/T20937TSA kit no. 27</td>
</tr>
<tr>
<td>simplefolia isocitcin B4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP</td>
<td>RBT-anti-SP</td>
<td>1:1,000/Abcam/ab67006</td>
<td>Dky anti-RBT-Cy3</td>
<td>1:100/Jackson/711-165-152</td>
</tr>
<tr>
<td>NeuN</td>
<td>MS-anti-NeuN</td>
<td>1:1,000/Chemicon/MAB377</td>
<td>Dky anti-MS-Cy5</td>
<td>1:100/Jackson/715-175-151</td>
</tr>
</tbody>
</table>

SP, Substance P; GP, guinea pig; HRP, horseradish peroxidase; SA, strepavidin; RBT, rabbit; MS, mouse; Dky, donkey; AF, Alexa Fluor; TSA, tyramide signal amplification.

hydrophobic resin (PAP Pen, Research Products). Slide-mounted sections were incubated at room temperature for 2 h in a solution of 2% Triton X-100 in phosphate-buffered saline (PBS). This pretreatment step improves the quality of P2X3-ir (116). The slides were rinsed in distilled water and then incubated for 30 min in a solution of 10% normal donkey serum (Jackson Immuno Research, West Grove, PA) in PBS with 0.3% Triton X-100 (MP Biomedicals, Solon, OH) to block nonspecific antibody binding. The immunohistochemical reagents and the labeling procedures are summarized in Table 1. Incubations in primary antisera were performed overnight (14–18 h) at 4°C. All steps were followed by multiple rinses with PBS. All fluorescent secondary antisera were diluted 1:100, and incubations were 2 h at room temperature. The tyramide signal-amplification reagent kit (Sigma-Aldrich, St. Louis, MO) (20–22) was used at 1:100, and incubations were for 4–5 min (124). Once all steps were completed, the slides were coverslipped with a glycerol-based photo-bleach-protective medium (Fluoromount-G, Southern Biotech).

Cell quantification. To view labeled sections, imaging was performed using the Nikon Eclipse TiE inverted microscope with NIS Elements software. Initially, images were captured using a ×10 lens (APO DIC N1 ×10/0.45 numeric aperture, Nikon) with consistent exposure times and computationally stitched together to visualize whole ganglion sections. Imaging of individual fluorophores was achieved with a mercury-arc light source and the following filter sets: for Cy3 (543/22 nm excitation, 593/40 nm emission, 562 nm dichroic, Nikon); for Alexa Fluor 488 (470/40 nm excitation, 525/50 nm emission, 495 nm dichroic, Nikon); for Alexa Fluor 560 (535/50 nm excitation, 605/50 nm emission, 600 nm dichroic, Nikon); and for Cy5 (615/70 nm excitation, 700/74 nm emission, 660 nm dichroic, Nikon).

To obtain unbiased percentages of P2X3, SP, and IB4 positive neurons in the NG, the physical dissector method was applied (37, 113). Across the entire ganglion, assembled by automated stitching, counts of all singly labeled, multilabeled, as well as nonlabeled/other (collectively comprising total neuronal counts) NG neurons were made by a scorer blinded to treatment groups. Starting with a random section, neurons with a clearly visible nucleus and definable soma were counted only if they were not present in an adjacent “look up” serial section. As an added measure to avoid double counting single section neurons, the counting sections were at least 60 serial section. As an added measure to avoid double counting single section, neurons with a clearly visible nucleus and definable soma were counted only if they were not present in an adjacent “look up” serial section. When examining the total percentage of labeled NG neurons, all of the markers were well represented (Fig. 1A), with the majority of NG neurons binding IB4 (IB4, 65.5 ± 6.2% vs. SP, 31.1 ± 10.3%; IB4 vs. P2X3, 51.2 ± 7.9%). Overall, there were eight different histochemical signa-
tices represented in the NG (Fig. 1B). The most prevalent combinations were neurons that were IB4+ only followed by the P2X3+ only and IB4+/P2X3+ combinations (IB4+ only vs. P2X3+ only, 33.3 ± 7.1 vs. 15.0 ± 3.3%, P < 0.001; IB4+ only vs. IB4+/P2X3+ only, 33.3 ± 7.1 vs. 15.0 ± 5.0%, P < 0.001). When considering specific colocalization patterns in the NG, about one-third of all IB4 neurons contain P2X3 and the percentage of neurons binding IB4 (49.1 ± 8.6%) and about one-half of all P2X3 neurons contain IB4 (49.1 ± 8.6%). A typical example of the quadruple immunohistochemical staining in the NG is provided in Fig. 2.

Effect of SCI on NG neurons expressing P2X3, SP, and binding IB4. Following a chronic transection injury at T8, BBB locomotor assessments at the 6-wk time point for all transected animals revealed an average score of 0.9 (±0.9). Only one animal had a BBB score greater than zero (score of 4.5:6 on the left hindlimb and 3 on the right hindlimb). Post hoc histological assessments of the lesion site revealed that this same animal in the spinal cord-transected group had a small percentage of area spared within the lesion site (16.1%, located at the most ventral extent of the epicenter). The data from this incomplete transection rat are provided, but as a separate group with an n of 1. Although statistical analyses could not be performed with n = 1, the immunohistochemical expression pattern in this SCI rat appeared to more closely resemble that of the naive group (P2X3+ only, 11.5 ± 5.2%; IB4+ only, 44.0 ± 2.2%). An example indicating a typical complete lesion is provided in Fig. 3. Note that it was also found that the average cell diameter for NG neurons was 29.6 ± 5.7 μm. This morphological feature was not affected by spinal transection injury (28.5 ± 6.04 μm).

In rats with a complete transection (n = 3; 6 ganglia), there was a significant increase in the percentage of total NG neurons expressing P2X3 (P < 0.001), as well as a significant decrease in the percentage of total NG neurons binding IB4 (P < 0.05) relative to noninjured controls (Fig. 4). There were no significant differences in SP or NeuN expression between groups. P2X3 expression and IB4 binding in the NG are demonstrated in Fig. 5. Within the spinal cord-transected group, the percentage of neurons expressing P2X3 and the percentage of neurons binding IB4 were each significantly greater than the percentage of neurons expressing SP, which was unchanged from the noninjured group of animals (P2X3, 27.3 ± 4.8% vs. SP, 6.5 ± 2.8%, P < 0.01; IB4, 23.7 ± 6.5% vs. SP, 6.5 ± 2.8%, P < 0.01; SP, 6.5 ± 2.8% vs. SP-noninjured, 5.8 ± 3.8%). From the total population of NG neurons, SCI did not significantly impact the subset of NG neurons that coexpressed IB4 and P2X3 (naive, 15.0 ± 5.0 vs. transected, 13.5 ± 5.7, P > 0.05), nor did it impact the subset of all IB4 neurons that contained P2X3 (naive, 30.9 ± 9.2% vs. transected, 35.9 ± 11.2%, P > 0.05). However, following SCI, the subset of all P2X3 neurons that contained IB4 was significantly lower com-

Fig. 2. Quadruple immunohistochemical staining in the NG. A: NeuN. B: IB4. C: P2X3. D: SP. E: merged. A confocal image displays the typical staining within the NG. NeuN was used to label all neurons. Different histochemical combinations include neurons that were IB4+ and P2X3+ only followed by IB4+ only (yellow arrows), and IB4+ only (white arrows), and neurons that were IB4+, P2X3+, and SP− (yellow arrows). Scale bar indicates 25 μm (×20 objective).

Fig. 3. Spinal transection injury at T8. An 18-μm-thick sagittal section stained with the Kluver-Barrera method illustrates a complete spinal transection at T8. Gel foam is placed in the lesion cavity to prevent contact from between rostral and caudal spinal cord tissue. The scale bar indicates 500 μm (×4 objective).
pared with noninjured animals (naive, 49.1 ± 8.6% vs. transected, 32.2 ± 10.5%, \(P < 0.01 \)).

With respect to the total number of labeled neurons within their individual populations (i.e., all P2X3+ neurons and all IB4+ neurons), the distribution of the P2X3+/IB4−/SP− only subset represents 50.7% of all P2X3+ neurons, while the IB4+/P2X3−/SP− only subset represents 42.6% of all IB4+ neurons. Overall, these populations of neurons comprised about one-half of the total population of NG neurons examined.

Immunohistochemical profile of bladder noninjured and injured NG neurons. The retrograde tracer DiI was injected into the bladder wall to determine whether the subsets of NG neurons affected by spinal cord transection include those that supply the bladder. Initially, we found that the percentage of NG neurons traced from the bladder in both groups in this study is similar to that in our previous study of spinaly intact animals [22.2 ± 3.6 vs. 21.4 ± 4.0% (77)]. Assessment of the superior cervical ganglion, which is located adjacent to the NG, did not reveal evidence of DiI tracer, indicating the tracer did not spread nonspecifically (Fig. 6).

With respect to the total population of P2X3+ NG neurons after chronic SCI (50.7 ± 8.2%), blader-innervating neurons (DiI+/P2X3+/IB4−) represented 32.8 ± 1.1%, while with respect to the total population of neurons that were IB4+ after injury (42.6 ± 5.6%), bladder-innervating neurons (DiI+/P2X3−/IB4+) represented 21.5 ± 7.4%. Overall, in these two distinct subsets of NG neurons, more than one-half of the neurons are traced from the bladder (Fig. 7). Images of the DiI+/P2X3− and DiI+/IB4+ subsets following transection are demonstrated in Fig. 8. Note that, in this study, the proportion of NG neurons traced from the bladder in spinaly intact rats (23.7 ± 3.6%) did not differ significantly from the proportion traced from the bladder after chronic spinal transection injury (20.2 ± 3.0%). Transection injury did, however, result in a significant increase in bladder size (wet weight) compared with noninjured controls (0.267 ± 0.118 g SCI vs. 0.149 ± 0.35 g naive; \(P < 0.05 \)), which can impact overall total bladder capacity and voiding efficiency, potentially leading to an alteration in bladder function.

DISCUSSION

Visceral organs, including those in the pelvic region, have a dual sensory innervation from spinal and nonspinal (i.e., the vagus nerve) sources (28, 38, 57, 77, 81, 84, 111). This study, using immunohistochemical techniques, examined the impact of SCI on the vagal component of that sensory innervation by assessing changes in the presence of P2X3, IB4, and SP in NG neurons. After spinal transection at T8, potential plasticity was evaluated in subsets of NG neurons that contain projections that bypass the spinal cord from visceral organs, including those projections that specifically supply the bladder. A major traumatic event to the nervous system, such as SCI, leads to dysfunction in multiple organ systems and ultimately influences the neurons that innervate these tissues. The findings of the present study indicate that vagal sensory cell bodies displayed an increase in P2X3 expression and a decrease in IB4 binding, which also held true for many neurons innervating the bladder. These results suggest that NG neurons, including the bladder subset, are sensitive to a spinal injury and are capable of responding by modifying their phenotype.

Immunohistochemical phenotype of NG neurons. Overall, from the cellular markers examined in this study, the majority of NG neurons were IB4+. IB4 has been shown to label primarily a subpopulation of nonpeptidergic spinal sensory afferents that are thought to be functionally distinct from peptidergic neurons or neurons that are IB4 negative (135). Even though IB4+ neurons, in general, are widely expressed within the NG (83, 98, 129, 169, 172), the meaning of IB4 binding in vagal afferents and whether or not these neurons share common characteristics based on their IB4 binding is still unclear. Vagal afferents are largely known for their involvement in conveying information about the physiological state of the visera to the brain as part of homeostatic regulation (32, 66, 85). In the GI tract, vagal afferent fibers are responsive to stretch and tension, as well as to locally released hormones following the ingestion of food (16, 18, 119, 156). Although they are typically not responders to visceral stimuli within the noxious range (112), previous data from our laboratory and that of others suggest otherwise. For example, while spinal afferents may be responsible for relaying mechanical nociceptive information, vagal afferents may play more of a role in conveying chemical nociceptive stimuli, thus contributing to disease-related conditions stemming from visceral hyperalgesia (44, 80, 86, 136). Therefore, besides the known role of vagal afferents in relaying homeostatic information to the brain, the population of vagal afferents that also are IB4+ may be involved in visceral nociceptive processing [based on the putative role of the majority of DRG IB4 binding neurons (117, 151)].

In the present study, it was shown that many vagal visceral afferents innervating the bladder also were IB4+. In other NG visceral afferents and in line with the results here, labeled vagal afferents from the stomach and duodenum demonstrated a substantial percentage of IB4 binding (172). Furthermore, numerous studies identify a low percentage of calcitonin gene related peptide (CGRP)-ir or peptide-containing NG neurons projecting to thoracoabdominal viscera (63, 175). Despite the fact that a large proportion of visceral NG neurons appear to be IB4+, the functional significance of these specific subsets also has yet to be determined, as evidence of particular markers for...
the coding of vagal afferent subtypes are limited (17). One
exception may be calretinin (calcium binding protein), which
appears to be expressed specifically by cervical esophageal
vagal afferents (49).

Similar to other studies reporting P2X3 receptor expression
in vagal sensory cell bodies using immunohistochemical tech-
niques, P2X3 receptors were highly prevalent and distributed
throughout the NG in the present study (11, 154). These
findings suggest that large populations of vagal afferents are
sensitive to ATP, and thus vagal pathways may be activated
through purinergic signaling mechanisms. When considering
individual subsets of neurons based on the cellular markers
examined in this study, P2X3 receptor expression was present
in about one-half of the IB4+/H11001 NG neurons, a coexpression
subset previously reported by our group in the NG (83) and
others in the DRG (25, 150, 152, 153, 164) and trigeminal
ganglion (TG) (131). However, while the percentage of overlap
between IB4 and P2X3 overall in the NG compared with other
sensory ganglia may be attributed to differences in embryolog-
ical origin (NG, epibranchial placode derived vs. DRG, neural
crest derived vs. TG, both placode and neural crest), which
appears to influence the neurochemical phenotype of visceral
afferents. For instance, DRG afferents innervating different
viscera, such as the stomach (63, 64, 128, 172), duodenum
(172), and pancreas (54, 128), are primarily peptidergic, ex-
pressing transient receptor potential vanilloid 1, CGRP, or SP,
whereas NG afferents innervating those same tissues display
limited expression of these peptidergic markers. In addition,
DRG afferents innervating bladder (168), colon (35), and
gastroduodenal (172) tissue exhibit low IB4 binding, which is
in contrast to the substantial degree of bladder-innervating
IB4+ neurons reported here in the NG and the significantly
greater percentage of IB4+ NG afferents innervating the stom-
ach and duodenum reported previously (172).

In regards to the overall population of NG neurons, the
percentage of SP+ only neurons we found was similar to an
earlier report, around 30% (161). While it is noted that SP+
neurons are abundant in the NG (175), their distribution has
been reported to be located near the rostral pole of the ganglion
(72, 161, 175). We and others have previously found a homog-
enous distribution of visceral labeling throughout the NG (1,
77, 127, 172). Although we did not assess the existence of an

Fig. 5. The effect of SCI on P2X3 and IB4 in the NG. An example displaying P2X3-ir (A) and IB4 binding (C) in the NG and following chronic spinal cord
transaction injury at T8 (B and D, respectively) is shown. Note the presence of increased P2X3-ir and decreased IB4 binding post-SCI. Images of sections from
both SCI and noninjured animals were stained and captured with the same protocols and at the same time (×10 objective).
Fig. 6. Superior cervical ganglion. There was no evidence of 1,1'-dilinoleyl-3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) punctate labeling present in the superior cervical ganglion. The scale bar represents 20 μm (×20 objective).

organotypic distribution of labeling for the histological markers of interest within the NG in this study, the presence of many SP-ir neurons in the rostral region may be anticipated due to the fact that it is anatomically close to the jugular ganglion, containing neuropeptide-rich neurons that primarily project to rostrally located viscera, such as the esophagus and lungs (120, 143, 157), and is embryologically distinct (neural crest-derived) from the NG (placode-derived) (9). The proximity of neurons with similar neurochemical phenotypes may be important for performing like functions and even for sensory afferent integration (26). Furthermore, given the embryological distinction between the vagal ganglia, the phenotype of vagal afferents also may be influenced by whether or not the cell body is located in either the nodose or jugular ganglion (170).

Effect of SCI on P2X3-ir in NG neurons. Following chronic SCI, two significant changes were observed in subsets of NG neurons. The first finding was a significant increase in the number of neurons expressing P2X3-ir in the spinal-transected group relative to noninjured controls. In the somatosensory system, alterations in P2X3 expression following nerve injury have been mixed. Both downregulation (25) and upregulation (50, 109) of the receptor have been documented in various peripheral nerve injury models, such as axotomy, ligation, and chronic constriction. In both studies, where there were increases in P2X3 expression, the injury model used resulted in some neurons that would be potentially “uninjured”. To assess these differences, activating transcription factor 3 (ATF3), a marker of peripheral nerve injury and absent from intact neurons (141), identified decreased P2X3 (mRNA) in ATF3-ir neurons, whereas the increased expression was evident in the intact subset of neurons (142). The significant increase in NG P2X3-ir found in the present study was consistent with the ATF3-ir findings (142), since the vagal afferents are likely not directly injured, given they by-pass the SCI, although this has not yet been directly tested.

Even though contact between the vagus nerve and its peripheral targets has not been severed, there is an overall effect of injury on the vagal afferent neurocircuitry (81, 86), and our discovery of the increased P2X3 expression seen in the NG here may help to improve our understanding of the indirect effect on the vagal system after injury. For instance, the increased P2X3-ir following SCI may be attributed to an inflammatory reaction of the system due to the nature of the injury itself. Acutely, SCI triggers an inflammatory response characterized by various resident [i.e., central nervous system (CNS) origin] (55, 90, 121) and blood-derived (134) cellular events, such as the synthesis of cytokines, chemokines, and the infiltration of leukocytes, neutrophils, and monocytes, which, over time, systemically may affect tissues outside the CNS, leading to organ dysfunction. Released inflammatory cells from the bloodstream can impact the functionality of different viscera due to the intimate relationship these organs have with the vascular system (12, 31, 65). In addition, both acute and chronic SCI induce significant changes in organs with spinal innervation from segments below the lesion level. Organs such as the bladder experience substantial stress and histopathology, which can lead to alterations in the integrity of the lining of the bladder (5), making the bladder more susceptible to chronic inflammation (76).

Structural changes after SCI also include bladder (detrusor muscle) hypertrophy, which triggers a release of neurotrophic factors, such as nerve growth factor (NGF), from the urotheelial lining (56, 126, 147, 148). Increases in NGF following SCI (147, 158, 165) or inflammation (110, 132), as well as other excitatory neurotransmitters, such as ATP (137), play a major role in neuroepithelial interactions. For example, in a migraine headache model, retrograde transport of NGF from the periphery to the TG or exposure of trigeminal afferents to NGF led to an upregulation of P2X3 receptor protein in the cell bodies (41, 58). Given that the vagus nerve provides a substantial degree of innervation to the bladder (77), the fact that we found many colabeled DiI+/P2X3+ NG neurons after injury in this study, the presence of the high-affinity receptor for NGF (TrkA) (70, 96, 174) and low affinity (p75) receptor (144, 175), and that vagal afferents have the capability to transport NGF (70), the phenotypic changes with respect to P2X3-ir in the bladder- innervating NG neurons have the potential to be mediated through the actions of NGF. Importantly, in a manner distinct from the actions of NGF (41), CGRP-mediated insertion of P2X3 into the cell-surface membrane is an alternative mecha-
nism, which has been demonstrated in sensitized TG neurons (52). However, since the majority of CGRP expressing neurons appear to reside in other cranial ganglia (petrosal, trigeminal, glossopharyngeal, and jugular) compared with the NG (68, 69, 71, 72), this molecular mechanism may indirectly affect NG neurons, perhaps acting at a distance through en passant synaptic contact (91).

The P2X3 receptor, predominantly expressed on sensory afferents (33, 97), including vagal fibers (88), also can be separately retrogradely transported from the periphery to the cell body via endosomes (34). This retrograde transport is thought to be important for maintaining neuronal activity and cell excitability through activation of transcription factors (34). In disease states, such as SCI, the extracellular milieu of ATP may be relatively high compared with healthy states, where excesses are rapidly hydrolyzed (29, 89, 108). Large amounts of ATP [likely released from damaged tissue (39)], can signal through P2X3 receptors and may show that P2X3 has a more extensive role in the NG besides normal visceral afferent transduction, perhaps contributing to nociceptive signaling following injury or tissue inflammation.

Effect of SCI on IB4 binding in NG neurons. The second change following chronic transection injury was a decrease in NG IB4 binding relative to controls. This finding is similar to that of others in cases where decreases in the total number of IB4 binding DRG neurons on the contralateral side (uninjured side) also have been demonstrated following L5 spinal nerve transection (99). Importantly, the numbers remain reduced at the chronic time point (5 wk postinjury), suggesting the effect was not transient. Since many neurons in general in the NG were found to bind IB4, the significant post-SCI decrease in the coexpression subset of P2X3 neurons containing IB4 may be attributed to the overall decrease in this relatively large population of IB4 neurons.

An explanation for the decrease in IB4 binding may be attributed to a stress response to the system following transection. Since glial cell-line derived neurotrophic factor supports and aids in the regulation of IB4 neurons postnatally (104), perhaps some disruption to its availability or receptor complex, as well as alteration to the IB4 binding glycoconjugate, could explain the observed decrease (15, 118). However, in response to peripheral nerve injury, spared IB4 neurons also demonstrate the capability to sprout, forming perineuronal nets with both satellite and adjacent cells within the ganglion (99). It has been suggested that a mechanism behind this sprouting in response to nerve injury may involve inflammatory environmental changes that create a chemotactic gradient, attracting various chemokines (23). This communication between injured and noninjured “neighbors” within the ganglion may serve as a basis for cross-excitation and could potentially induce hyperalgesia or allodynia (3, 24). Even though the injury model used in this study does not directly injure vagal neurons, they could

Fig. 8. P2X3-ir and IB4 binding in bladder-traced NG neurons after transection. A confocal image illustrates a Dil+ neuron in A that is also immunoreactive for P2X3 in B (white arrows). C: demonstration of the overlay. An image from the inverted Nikon microscope illustrates a Dil+ neuron in D that also binds IB4 in E (white arrowhead). F: demonstration of the overlay. One example of each is displayed. In both images, the scale bar indicates 25 μm (×20 objective).
be considered “spared” neurons that also demonstrate a phenotypic switch in response to CNS damage and have the potential to drive visceral nociceptive signaling.

Effect of SCI on SP expression in NG neurons. SP is one of the main neuropeptides released from a proportion of primary afferent terminal endings that express SP, in response to irritation or inflammation (7, 27, 48), and is present in NG neurons (175). No significant differences in SP-ir were present in this study between transected and noninjured groups. A previous report assessing changes in NG neurotransmitters found that SP-ir was unaffected by vagal axotomy (74). The lack of changes in the NG with respect to SP-ir following injury does not preclude any particular alterations at terminal endings, either peripherally in target organs or centrally (somatic nucleus). For instance, there is a high concentration of SP afferent terminals, primarily of vagal origin, present in the somatic nucleus (73, 102, 175). Alternatively, there may be molecular pathway alterations involved in the release of SP and translation at the cell body (114, 139). An acute SCI or direct tissue inflammation model (such as acetic acid instillation into the bladder) may provide more insight to vagal SP expression in the rat (10, 114).

Alterations to bladder NG neurons following SCI. SCI did not result in differences compared with noninjured controls in the number of NG neurons labeled from bladder, confirming these vagal afferents remain intact after cord transection. Although vagal afferents exhibit a high degree of neurochemical and electrophysiological plasticity in response to trauma and inflammation (26, 106, 115, 171), it is likely that the observed neurochemical changes in this study are a result of interactions with the target organs that these vagal fibers innervate rather than direct neural damage. It should be noted, however, that other extrinsic sources of ATP can reach P2X3 receptors through release from sympathetic neurons, tumor cells, or from vascular endothelial cells associated with ischemia (30).

Plasticity related changes in bladder vagal afferents fall in line with evidence from the spinal system after SCI. Spinal sensory neurons innervating the bladder exhibit both morphological and physiological changes after SCI (93, 166). Given the important transduction role of P2X3 receptors in spinal bladder afferents (36) and the fact that many vagal neurons traced from the bladder expressed P2X3 suggest that the vagus nerve may participate in the sensory portion of micturition function. Our collective recent data indicating extensive vagal afferent innervation of mammalian urinary bladder (77) and SCI-induced changes in a transduction channel like P2X3 may have important clinical applications. These findings could contribute to whatever plasticity underlies reports of altered sensations stemming from the below-level viscera, such as sensations of bladder filling or fullness in clinically complete SCI patients above T10 (51, 92, 162).

A large proportion of the IB4 neurons were traced from the bladder, which is complementary to an earlier study showing that IB4 binds different types of visceral afferents in the NG (172). Although the distal urethra was not examined in the present study, a large proportion of spinal neurons that innervate this region of the lower urinary tract include IB4+ afferents (168).

Perspectives and Significance

Because of the chronic extent of multisystem functional impairment and disability, SCI presents a significant economic burden for the patient, family unit, and society overall with high direct and indirect costs estimated in the billions (101). Apart from paralysis, some of the major complications of SCI affecting quality of life, include deficits to urological function (4, 47, 67). The vagus nerve, with the majority of its cell bodies located in the NG, is an extraspinal pathway through which information from regions below the level of a spinal lesion can directly travel to the brain stem, bypassing the spinal cord entirely. Work from our laboratory previously identified an anatomical connection to the male rat urinary bladder through the vagus nerve (77). The present study examined the immunohistochemical phenotype of vagal sensory neurons overall, as well as in those that innervate the bladder. The results from this study demonstrate that vagal afferents are responsive to spinal injury, and further assessments of their functional nature may provide insight on how to take advantage of this route that by-passes the spinal cord to improve therapeutic interventions for SCI patients.

Conclusion. The present study demonstrated neurochemical changes in the NG, a site remote from the injured spinal cord. Through target-organ neural interactions, vagal afferent fibers are influenced by their connections to the viscera. Therefore, overall changes in these organs following SCI could impact the neurochemical properties of vagal afferents innervating them. The increased expression of P2X3 and the decreased binding of IB4 in the sensory cell bodies of vagal afferents post-SCI indicates an indirect effect of injury on the vagal neurocircuitry. A majority of neurons in the P2X3 subset after spinal transection were DiI+, indicating many NG bladder afferents have the potential to respond to alterations in ATP, perhaps even playing a role in generating specific sensations associated with the bladder, such as fullness. In addition, the considerable proportion of bladder IB4+ NG neurons demonstrates that vagal afferents may participate in visceral nociceptive processing. Whether or not SCI induces changes in NG neuron function will require an examination of their electrophysiological properties in bladder populations.

ACKNOWLEDGMENTS

The authors thank Jim Armstrong, Jason Fell, Patricia Ward, Ann-Claude Rakotoniaina, Arkadiusz Slusarczyk, Jason Beare, Shelia Arnold, and Amanda Pocratsky for technical assistance. The authors also thank Drs. Scott Whitemore, Martha Bickford, and Theo Hagg for antibody donations, and Darlene Burke for statistical assistance.

GRANTS

This study was supported by National Institute of Neurological Disorders and Stroke Grant F31-NS-07750 (A. N. Herrity) and Intramural Research Incentive Grant from the University of Louisville (C. H. Hubscher). This project also utilized KSCIRC Neuroscience Core facilities that are supported by National Institute of General Medical Sciences/National Center for Research Resources P30 Grant 8P30-GM-103507.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

REFERENCES

SCI-INDUCED VAGAL SENSORY PLASTICITY

141. Tsujino H, Kondo E, Fukuoka T, Dai Y, Tokunaga A, Miki K,
Yonenobu K, Ochi T, Noguchi K. Activating transcription factor 3
(ATF3) induction by axotomy in sensory and motoneurons: A novel

142. Tsuzuki K, Kondo E, Fukuoka T, Yi D, Tsujino H, Sakagami M,
Noguchi K. Differential regulation of P2X(3) mRNA expression by
peripheral nerve injury in intact and injured neurons in the rat sensory

143. Undem BJ, Chuauchoo B, Lee MG, Weinreich D, Myers AC, Kol-
larik M. Subtypes of vagal afferent C-fibres in guinea-pig lungs. J

144. Verge VM, Merlio JP, Grondin J, Ernfrors P, Persson H, Riopelle RJ,
Hokfelt T, Richardson PM. Colocalization of NGF binding sites, trk
mRNA, and low-affinity NGF receptor mRNA in primary sensory
neurons: responses to injury and infusion of NGF. J Neurosci 12:

145. Vizzard MA. Alterations in growth-associated protein (GAP-43) ex-
pression in lower urinary tract pathways following chronic spinal cord injury.

146. Vizzard MA. Alterations in neuropeptide expression in lumbosacral
bladder pathways following chronic dystonia. J Chem Neuroanat 21:

147. Vizzard MA. Changes in urinary bladder neurotrophic factor mRNA and
NGF protein following urinary bladder dysfunction. Exp Neurol 161:

148. Vizzard MA. Neurochemical plasticity and the role of neurotrophic
factors in bladder reflex pathways after spinal cord injury. Prog Brain

149. Vizzard MA, Brissin M, de Groat WC. Transneuronal labeling of
neurons in the adult rat central nervous system following inoculation of

150. Vulchanova L, Arvidsson U, Riedl MS, Buell G, Surprenant
A, North RA, Elde R. Differential distribution of two ATP-gated
channels (P2X receptors) determined by immunocytochemistry. Proc

151. Vulchanova L, Olson TH, Stone LS, Riedl MS, Elde R, Honda CN.
Cytotoxic targeting of isoleucin IB4-binding sensory neurons. Neurosci-

152. Vulchanova L, Riedl MS, Shuster SJ, Buell G, Surprenant A, North RA,
Elde R. Immunohistochemical study of the P2X2 and P2X3 receptor
subunits in rat and monkey sensory neurons and their central terminals.

153. Vulchanova L, Riedl MS, Shuster SJ, Stone LS, Hargreaves KM,
Buell G, Surprenant A, North RA, Elde R. P2X3 is expressed by DRG
neurons that terminate in inner lamina II. Eur J Neurosci 10: 3470–3478,
1998.

P2X1, P2X2, P2X3, and P2X4 receptor subunits in rat nodose ganglion

155. Wang T, Molliver DC, Jing X, Schwartz ES, Yang FC, Samad OA,
Ma Q, Davis BM. Phenotypic switching of nonpeptidergic cutaneous

156. Wang YH, Tache Y, Sheibol AB, Go VL, Wei JY. Two types of
leptin-responsive gastric vagal afferent terminals: an in vitro single-unit
study in rats. Am J Physiol Regul Integr Comp Physiol 273: R833–R837,
1997.

157. Wank M, Neuhuber WL. Local differences in vagal afferent innerva-
tion of the rat esophagus are reflected by neurochemical differences at
the level of the sensory ganglia and by different brainstem projections. J

JC, Harkema SJ, Hubscher CH. Novel multi-system functional gains
via task specific training in spinal cord injured male rats. J Neurotrauma

159. Williams RE 3rd, Bauman WA, Spungen AM, Vinnakota RR, Farid
RZ, Galea M, Korsten MA. SmartPill technology provides safe and
effective assessment of gastrointestinal function in persons with spinal

161. Wu XY, Zhu JX, Gao J, Ouyang C, Li Y. Neurochemical phenotype
of vagal afferent neurons activated to express C-FOS in response to

162. Wyndaele JJ. Investigation of theafferent nerves of the lower urinary
tract in patients with “complete” and “incomplete” spinal cord injury.

163. Wynns G, Ma B, Ruan HZ, Burnstock G. Purinergic component of
mechanosensory transduction is increased in a rat model of colitis. Am J

164. Xi, Z, Bo X, Oglesby I, Ford A, Burnstock G. Localization of
ATP-gated P2X2 receptor immunoreactivity in the rat hypothalamus.

165. Yoshimura N. Bladder afferent pathway and spinal cord injury: possible
mechanisms inducing hyperreflexia of the urinary bladder. Prog Neuro-

166. Yoshimura N, de Groat WC. Plasticity of Na+ channels in afferent
neuromes innervating rat urinary bladder following spinal cord injury. J

167. Yoshimura N, Erdman SL, Snider MW, de Groat WC. Effects of
spinal cord injury on neurofilament immunoreactivity and caspasa-
sensitivity in rat dorsal root ganglion neurons innervating the

168. Yoshimura N, Soki S, Erickson KA, Erickson VL, Hancellob ML, de
Groat WC. Histological and electrical properties of rat dorsal root
ganglion neurons innervating the lower urinary tract. J Neurosci 23:

169. Young RL, Cooper NJ, Blackshaw LA. Chemical coding and central
projections of gastric vagal afferent neurons. Neurogastroenterol Motil

170. Yu S, Undem BJ, Kollarik M. Vagal afferent nerves with nociceptive

171. Zhang X, Ji RR, Arvidsson J, Lundberg JM, Bartfai T, Bedecs K,
Hokfelt T. Expression of peptides, nitric oxide synthase and NPY
receptor in trigeminal and nodose ganglia after nerve lesions. Exp Brain

172. Zhong F, Christianson JA, Davis BM, Bielefeld K. Dichotomizing
axons in spinal and vagal afferents of the mouse stomach. Dig Dis Sci 53:

Injured primary sensory neurons switch phenotype for brain-derived

174. Zhuo H, Helke CJ. Presence and localization of neurotrophin receptor
tyrosine kinase (TrkA, TrkB, TrkC) mRNAs in visceral afferent neurons
of the nodose and petrosal ganglia. Brain Res Mol Brain Res 38: 63–70,
1996.

175. Zhuo H, Ichikawa H, Helke CJ. Neurochemistry of the nodose gan-

176. Zvarova K, Dunleavy JD, Vizzard MA. Changes in pituitary adenalyte
cyclase activating polypeptide expression in urinary bladder pathways