Hemodynamic and neurochemical determinates of renal function in chronic heart failure

Cameron Gilbert, David Z. I. Cherney, Andrea B. Parker, Susanna Mak, John S. Floras, Abdul Al-Hesayen, and John D. Parker

1Division of Cardiology and Nephrology, Mount Sinai Hospital and University Health Network Hospital, Toronto, Canada; 2Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada; and 3Division of Cardiology, Saint Michael’s Hospital, Toronto, Canada

Submitted 4 May 2015; accepted in final form 7 November 2015

Gilbert C, Cherney DZ, Parker AB, Mak S, Al-Hesayen JS, Parker JD. Hemodynamic and neurochemical determinates of renal function in chronic heart failure. Am J Physiol Regul Integr Comp Physiol 310: R167–R175, 2016. First published November 11, 2015; doi:10.1152/ajpregu.00190.2015.—Abnormal renal function is common in acute and chronic congestive heart failure (CHF) and is related to the severity of congestion. However, treatment of congestion often leads to worsening renal function. Our objective was to explore basal determinants of renal function and their response to hemodynamic interventions. Thirty-seven patients without CHF and 59 patients with chronic CHF (ejection fraction; 23 ± 8%) underwent right heart catheterization, measurement of glomerular filtration rate (GFR; inulin) and renal plasma flow (RPF; para-aminophenurate), and radiotracer estimates of renal sympathetic activity. A subset (26 without, 36 with CHF) underwent acute pharmacological intervention with dobutamine or nitroprusside. We explored the relationship between baseline and drug-induced hemodynamic changes and changes in renal function. In CHF, there was an inverse relationship among right atrial mean pressure (MAP) and renal sympathetic activity. In contrast, mean arterial pressure (MAP), cardiac index (CI), and measures of renal sympathetic activity were not significant predictors. In those with CHF there was an inverse relationship among the drug-induced changes in MAP as well as pulmonary artery pressure and the change in GFR. Changes in MAP and CI did not predict the change in GFR in those with CHF. Baseline values and changes in MAP pressure did not correlate with GFR in those without CHF. In the CHF group there was a positive correlation between MAP pressure and renal sympathetic activity. There was also an inverse relationship among MAP pressure, GFR, and RPF in patients with chronic CHF. The observation that acute reductions in MAP pressure is associated with an increase in GFR in patients with CHF has important clinical implications.

heart failure; renal function; hemodynamics; sympathetic nervous system

Although some patients with congestive heart failure (CHF) have concomitant primary renal disease, many have abnormalities of renal function with no identified cause, a phenomenon now referred to as the cardiorenal syndrome. Renal insufficiency, most commonly assessed by creatinine-based estimates of glomerular filtration rate (GFR), is now recognized as a powerful independent predictor of mortality in patients with both chronic and acute decompensated CHF (19, 20). Other investigations have confirmed the importance of baseline renal function, and its response to therapy, as a determinant of clinical outcome (6).

The pathophysiological mechanisms underlying the interactions between the heart and kidney that lead to abnormal renal function in CHF are poorly understood. Earlier reports (7) found that cardiac output was an important determinant of GFR; however, these patients had very severe CHF with markedly depressed cardiac output. More recently, invasive studies have suggested that systemic blood pressure and cardiac index (CI) are not independently related to estimates of GFR (35). In contrast, venous congestion with high right-sided filling pressures has been reported as independent predictor of estimated GFR, as well as mortality (10, 35). This observation stands in contrast to a number of earlier reports that found little impact of venous renal pressure on renal blood flow and GFR (23, 25, 38). However, these reports examined the impact of an increase in renal venous pressure in animals without CHF and were isolated to the renal vascular bed in the absence of increases in systemic venous pressure. Although increased venous pressure appears to be a predictor of estimated GFR and clinical outcome, therapy of venous congestion does not consistently lead to improvement in these endpoints. Some patients with severe congestion respond well to therapy with relief of congestion and an improvement in GFR, while in others congestion persists and renal function worsens (34).

The current paper describes the relationship among direct measurements of GFR (inulin) and renal plasma flow (RPF; para-aminophenurate), invasive hemodynamics, and measures of renal sympathetic activity (radiotracer methodology) in a group of patients without CHF [and preserved left ventricular (LV) systolic function] and a group with chronic CHF secondary to LV systolic dysfunction. Based on previous animal observations and some human studies we hypothesized that there would be an inverse relationship between cardiac filling pressures and measures of renal function. In addition, we examined the impact of acute changes in hemodynamics on these variables. Our aim was to explore the hemodynamic and neurochemical determinates of renal function and its response to hemodynamic intervention in patients with CHF.

METHODS

Study population. Data were obtained from 96 patients undergoing an elective diagnostic catheterization in our research cardiac catheterization laboratory. All patients had agreed to participate in a research study to be carried out at the end of the diagnostic cardiac...
Renal NE production was estimated by calculating renal NE spillover (RNESP):

$$\text{RNESP} = \left[(C_{rv} - C_{art}) + C_{art} \times (\text{NE}_{\text{extr}}) \right] \times \text{RPF}$$

where C_{rv} is the NE concentration in the renal vein, C_{art} is the NE concentration in the artery, and NE_{extr} is the extraction of radiolabeled NE across the kidney. Our laboratory has experience with all of the techniques described and details of the methodology can be found in previous publications (4, 36).

Measurements of renal function. RPF was measured by use of the para-aminohippurate clearance technique. GFR was measured by use of inulin clearance. Arterial vs. renal vein concentrations of para-aminohippurate and inulin were determined to measure RPF and GFR using established methods in our laboratory (2). Values for GFR and RPF (in ml/min) were normalized to body surface area (in m²/1.73).

Pharmacological intervention. A subgroup of patients received a drug intervention after control measurements were completed. One group ($n = 29$, 14 in the no CHF group, and 15 with CHF) had an intravenous infusion of dobutamine, starting at 2.5 μg·kg$^{-1}$·min$^{-1}$, following baseline hemodynamic measurements. The dobutamine infusion rate was increased until the LV +dP/dt increased by 20%. Hemodynamic, renal function, and neurochemical responses were measured 30 min later (1). A separate group ($n = 33$, 12 in the no CHF group and 21 with CHF) had an intravenous infusion of sodium nitroprusside, starting at 10μg/min. The nitroprusside infusion rate was increased until MAP had decreased by 10%. Hemodynamic, renal function, and neurochemical responses were reassessed 30 min after this reduction in mean arterial pressure had been achieved (2).

The peak change in hemodynamic, neurochemical, and renal functional parameters was calculated (drug vs. control), and regression analyses were carried out to explore the relationship between changes in renal function and the changes in hemodynamic and neurochemical variables. The responses to dobutamine and nitroprusside were combined so that the effect of a broad spectrum of hemodynamic changes and renal function parameters could be observed.

Statistical methods. Data were analyzed using the Stagraphics, version 1.1.2 (Warrenton, VA). Comparison of baseline characteristics, hemodynamics, and neurochemical variables between the no CHF and CHF groups were determined using either Student t-tests or a χ^2-test. $P < 0.05$ was considered significant. Baseline hemodynamic and neurochemical correlates of GFR, RPF, and RNESP were determined by univariate, followed by stepwise linear regression. Independent variables included age, HR, MAP, RAM, PAM, PCWP, CI, RNESP, TBNESP, RPF, and renal pressure (RPP). Similar univariate and multiple regression analyses were carried out examining the relationships between changes in hemodynamic and neurochemical variables with changes in renal function using the same independent and dependent variables described above. A threshold of $P \leq 0.15$ in the univariate analysis was used for entry into the multivariate analysis. With the use of this threshold, no more than four independent variables were entered into any of the multivariate models. Independent variables were only considered to make an independent contribution to the model if they remained in the model with $P \leq 0.05$. Data are presented as means ± SD.

RESULTS

Baseline patient characteristics are presented in Table 1. The groups with and without CHF were similar in age. Those with CHF had lower systemic arterial pressures, CI, GFR, as well as RPF. They also manifest increased central filling pressures and measures of systemic and renal-specific sympathetic activity.
Table 1. Baseline characteristics

<table>
<thead>
<tr>
<th>Factor</th>
<th>No CHF Group (n = 37)</th>
<th>CHF (n = 59)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yr</td>
<td>67 ± 9</td>
<td>69 ± 12</td>
</tr>
<tr>
<td>Diabetes (Type 2)</td>
<td>9</td>
<td>23</td>
</tr>
<tr>
<td>Hypertension</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Male/female</td>
<td>26/11</td>
<td>51/89</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>78 ± 10</td>
<td>83 ± 8</td>
</tr>
<tr>
<td>BSA, m²</td>
<td>1.9 ± 0.2</td>
<td>2.0 ± 0.2</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>27.8 ± 3.1</td>
<td>29.5 ± 2.7</td>
</tr>
<tr>
<td>Hct</td>
<td>0.430 ± 0.033</td>
<td>0.409 ± 0.048*</td>
</tr>
<tr>
<td>Creatinine, µmol/l</td>
<td>80 ± 16</td>
<td>117 ± 45*</td>
</tr>
<tr>
<td>HR, beats/min</td>
<td>65 ± 9</td>
<td>73 ± 14*</td>
</tr>
<tr>
<td>EF, %</td>
<td>59 ± 8</td>
<td>23 ± 8*</td>
</tr>
<tr>
<td>RAM, mmHg</td>
<td>2 ± 2</td>
<td>6 ± 5*</td>
</tr>
<tr>
<td>PAM, mmHg</td>
<td>13 ± 4</td>
<td>27 ± 11*</td>
</tr>
<tr>
<td>PCWP, mmHg</td>
<td>6 ± 3</td>
<td>15 ± 9*</td>
</tr>
<tr>
<td>MAP, mmHg</td>
<td>99 ± 15</td>
<td>82 ± 15*</td>
</tr>
<tr>
<td>RPP, mmHg</td>
<td>96 ± 15</td>
<td>76 ± 17</td>
</tr>
<tr>
<td>CI, l·min⁻¹·m⁻²</td>
<td>2.5 ± 0.4</td>
<td>2.3 ± 0.5*</td>
</tr>
<tr>
<td>GFR, ml·min⁻¹·1.73 m⁻²</td>
<td>107 ± 33</td>
<td>91 ± 26*</td>
</tr>
<tr>
<td>RPF, ml·min⁻¹·1.73 m⁻²</td>
<td>508 ± 115</td>
<td>408 ± 125*</td>
</tr>
<tr>
<td>Filtration fraction, %</td>
<td>21.5 ± 5.0</td>
<td>23.6 ± 6.9</td>
</tr>
<tr>
<td>NEart, nmol/l</td>
<td>1.6 ± 1.1</td>
<td>2.1 ± 3.4*</td>
</tr>
<tr>
<td>NEcv, nmol/l</td>
<td>2.1 ± 1.1</td>
<td>3.1 ± 1.7*</td>
</tr>
<tr>
<td>TBNESP, nmol/min</td>
<td>4.8 ± 2.7</td>
<td>7.1 ± 4.0*</td>
</tr>
<tr>
<td>RNPESP, pmol/min</td>
<td>707 ± 404</td>
<td>926 ± 509*</td>
</tr>
</tbody>
</table>

Data are means ± SD. CHF, congestive heart failure; BSA, body surface area; BMI, body mass index; Hct, hematocrit; HR, heart rate; EF, ejection fraction; RAM, right atrial mean pressure; PAM, mean pulmonary artery pressure; PCWP, pulmonary capillary wedge pressure; MAP, mean arterial blood pressure; RPF, renal perfusion pressure; CI, cardiac index; GFR, glomerular filtration rate; RPF, renal plasma flow; NEart, arterial norepinephrine; NEcv, renal vein norepinephrine; TBNESP, total body norepinephrine spillover; RNPESP, renal norepinephrine spillover. *P < 0.05 vs. no CHF group; †P = 0.053 vs. no CHF group.

GFR: variables contributing to the model. In the group without CHF, the univariate analysis revealed a significant positive relationship between GFR and RPF (P < 0.0001) but no relationship between GFR and other variables (Fig. 1; Table 2). In the multivariate regression model, the only variable making a significant contribution to the model with GFR as the dependent variable was RPF.

In those with CHF, there was also a positive univariate relationship between GFR and RPF as well as RPP (P < 0.04, respectively). Furthermore, there was a significant inverse univariate relationship between GFR and RAM and RPP (all P < 0.04, respectively). In this group, the multivariate model again revealed an independent contribution from RPF but also significant contributions from the components of RPP, namely RAM and MAP (Table 2). Of note, as with the univariate analysis, in the multivariate model, RAM showed a negative relationship with GFR, with higher right atrial pressures being associated with lower values of GFR.

RPF: variables contributing to the model. In the group without CHF, the univariate analysis revealed an inverse relationship between RPF and both PAM and RAM (P = 0.008 and 0.03, respectively; Table 2). In the multiple regression analysis, no independent variable made a significant contribution to the model with RPF as the dependent variable in the group without CHF. In the CHF group, there was a negative correlation between RAM and RPF in both the univariate and multivariate analysis; no other variable had a significant relationship to RPF (Table 2).

RPF: variables contributing to the model. In the group without CHF, the univariate analysis revealed a significant inverse relationship between RPF and both PAM and MAP (P < 0.04), a relationship that the multivariate stepwise procedure confirmed was independent of other variables (Table 2). In those with CHF, only TBNESP (a measure of total body sympathetic activity) had a significant relationship to RNPESP in both the univariate analysis (P < 0.02) and in the multivariate analysis (Table 2). No hemodynamic variable was associated with renal sympathetic activity in those with CHF.

Pharmacological intervention. The administration of nitroprusside and dobutamine was associated with a significant range of change in hemodynamics in both groups. The percent change and range of change for each variable are presented in Table 3.

Change in GFR: variables contributing to the model. In the group without CHF, the univariate analysis revealed a significant positive correlation between the change in GFR and the change in RPF (P < 0.0001; Table 4; Fig. 2). There was also a significant positive univariate relationship between the change in GFR and the change in both MAP (P = 0.02) and RPP (P < 0.01). In this group, the multivariate regression analysis revealed that the change in RPF and RPP both made independent contributions to the model where the change in GFR was the dependent variable. If the components of RPP (RAM and MAP) were included in the analysis, the result was very similar in that both the change in RPF and MAP made independent contributions to the model.

In the CHF group, there was an inverse relationship between the change in RPF and both PAM, as well as PCWP and MAP, and the change in GFR (all P < 0.01; Table 4; Fig. 2). In the multivariate regression model RAM and MAP pressures both made independent contributions to the model of the change in GFR, demonstrating that decreases in cardiac filling and pulmonary pressures were associated with increases in GFR. In contrast, there was no relationship between the change in GFR and the change in RPF or the change in CI by either the univariate or multivariate regression analysis.

As can be seen in Fig. 2B, the slopes of the regression lines depicting the relationship between the change in GFR and the change in RAM pressure in the CHF group were essentially identical when the effects of nitroprusside and dobutamine were examined separately. Similar findings were found in the group without heart failure when the relationship between the change in GFR vs. the change in MAP were separated into the subjects that received nitroprusside vs. those that received dobutamine (Fig. 2C).

Change in RPF: variables contributing to the model. No variable was associated with the change of RPF in the univariate or multivariate regression analysis in either group (Table 4).

Change in renal sympathetic activity: variables contributing to the model. In those without CHF, the univariate analysis revealed that the change in the RNPESP was inversely related to the change in both MAP and CI (P < 0.04 and 0.02, respectively; Table 4). There was also a positive univariate relationship...
ship between the change in TBNESP and this measure of renal-specific sympathetic activity ($P < 0.0001$). In the multivariate regression, only the change in TBNESP was significantly related to the change in the RNESP (Table 4). In the group with CHF, there was also an inverse relationship between the change in both MAP and RPP and the change in the RNESP ($P < 0.04$, and 0.01 respectively). In the multivariate regression model, the change in TBNESP, CI, and RAM made independent contributions to the model of the change in the RNESP (Table 4).

Fig. 1. Univariate relationship between glomerular filtration rate (GFR) and right atrial mean pressure in the group without congestive heart failure (CHF; A) and those with chronic CHF (B). Univariate relationship between GFR and renal perfusion pressure in the group without CHF (C) and those with chronic CHF (D). Univariate relationship between GFR and mean arterial pressure in the group without CHF (E) and those with chronic CHF (F). BSA, body surface area.
Table 2. Stepwise regression: baseline variables

<table>
<thead>
<tr>
<th>Predictors of GFR</th>
<th>No CHF group</th>
<th>CHF group</th>
<th>CHF group (MAP and RAM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted R²</td>
<td>0.445</td>
<td>0.524</td>
<td>0.536</td>
</tr>
<tr>
<td>P</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>Predictors of RPF</td>
<td>No CHF group</td>
<td>CHF group</td>
<td>CHF group (MAP and RAM)</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>—</td>
<td>0.143</td>
<td>0.095</td>
</tr>
<tr>
<td>P</td>
<td>—</td>
<td><0.004</td>
<td><0.03</td>
</tr>
<tr>
<td>Predictors of RNESP</td>
<td>No CHF group</td>
<td>CHF group</td>
<td>—</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.1</td>
<td>0.095</td>
<td>—</td>
</tr>
<tr>
<td>P</td>
<td><0.05</td>
<td><0.03</td>
<td>—</td>
</tr>
</tbody>
</table>

DISCUSSION

Renal insufficiency is very common in the setting of both chronic and acute decompensated CHF, with 30–35% of patients having a moderate reduction in GFR (33, 39). Traditionally, it was believed that renal insufficiency in CHF was secondary to a reduction in cardiac output and effective circulating blood volume. Early studies documented that severe CHF, with very low cardiac output, is associated with reductions in both RPF and GFR (7, 31). However, in patients with moderate reductions in cardiac output, GFR can be maintained in the face of moderate reductions in RPF, as filtration fraction increases to compensate for the reduction of filtered volume. This is mediated by an increase in glomerular filtration pressure secondary to constriction of efferent glomerular arterioles. Despite this ability to maintain GFR, the majority of patients with CHF are not hypotensive and do not have evidence of low cardiac output. However, despite the presence of normal blood pressure they often have significant renal dysfunction with reduced GFR. In such patients, the cause of renal insufficiency remains ambiguous, with multiple suggested mechanisms, but no consensus. The data presented here explore differences in the control of renal function in a group of patients with normal hemodynamics and no history of CHF compared with patients with chronic CHF secondary to LV systolic dysfunction.

Analysis of baseline variables confirms that RPF is the only independent determinant of GFR in the group without CHF. In the CHF group there was also a strong univariate correlation between RPF and GFR, as has been previously described (7). In the multivariate analysis, RPF made the strongest contribution to the model predicting GFR; however, in this group RPP was also an important determinant, with lower pressures associated with lower GFR. If the components of RPP (RAM and MAP) were entered into the model, instead of RPP, both made significant contributions, with higher RAM pressures predicting lower GFR. In the group without CHF, there was no independent predictor of RPF, while in those with CHF, only RAM pressure was an independent predictor of RPF. Overall, these observations point to an interaction between right atrial pressure and renal function in patients with CHF. This is consistent with a number of prior observations that venous congestion/elevated central venous pressure is associated with reduced renal function as assessed by estimated GFR in patients with CHF (3, 35) and those with pulmonary hypertension (10). In fact, this inverse relationship between right atrial pressure and GFR has been demonstrated across a broad spectrum of patients with cardiovascular disease (11). Previously, only one small study has examined the relationship between cardiac filling pressures and directly measured GFR (26). These studies all examined the relationship between baseline right-sided filling pressures and renal function in patients with CHF and did not describe the response to a hemodynamic intervention. As will be discussed below, the interaction between right atrial pressure and renal function is further supported by our observations concerning the effect of acute, drug-induced changes in hemodynamics and measures of both RPF and GFR.

The current analysis also provides unique information concerning the response of renal function to acute hemodynamic interventions. A number of studies have examined the impact of vasodilators and positive inotropes on renal blood flow (27–30, 32), but remarkably few have made use of direct measures of GFR (8, 16, 21, 37). These studies reported hemodynamic and GFR responses to a pharmacological intervention as the mean change of each variable but did not examine the relationship between individual hemodynamic and GFR responses. In this regard, our observations make a significant contribution to our knowledge in this area. The findings...
Predictors of the change in GFR
No CHF group
Multivariate model (RPP) 0.594 <0.0001
Contribution variables
ΔRPP <0.0001
ΔRPP 0.005
No CHF group
Multivariate model (MAP and RAM) 0.563 <0.0001
Contribution variables
ΔRPP <0.001
ΔMAP 0.004
CHF group
Multivariate model 0.401 0.0002
Contribution variables
ΔPAM [ve coef] 0.002
ΔRPP [ve coef] <0.02
Predictors of the change in RPF
No CHF group
Multivariate model — —
CHF group
Multivariate model — —
Predictors of the change in RNESP
No CHF group
Multivariate model 0.625 <0.0001
Contribution variables
ΔTBNESP <0.0001
CHF group
Multivariate model 0.565 <0.001
Contribution variables
ΔTBNESP 0.0001
ΔCI 0.002
ΔRAM [ve coef] <0.02

ings demonstrate that in the setting of CHF, reductions in right atrial and pulmonary pressures are associated with increases in GFR. Importantly, this inverse relationship is similar to the (paradoxical) relationship found between RAM and GFR at baseline. Of note, the relationship between the change in RAM pressure and the change in GFR was essentially identical whether the hemodynamic effect was mediated by dobutamine or nitroprusside, suggesting that the GFR response was not mediated by a specific pharmacodynamic effect of either drug. Importantly, changes in systemic arterial blood pressure and cardiac output in patients with CHF were not related to changes in GFR. This is consistent with prior observations that therapy with vasodilators or positive inotropic agents is not associated with significant changes in GFR (8, 30). By contrast, in the group without CHF, the predictors of a change in GFR were quite different, with independent contributions from changes in RPF and MAP. These contrasting responses emphasize that the impact of hemodynamic changes on renal function in patients with CHF cannot be predicted by what is anticipated from normal physiology.

The mechanism of the association between elevated central venous pressure and reduced GFR, to date, remains speculative. Normal physiology defines a positive relationship between central venous pressure and GFR whereby increased filling pressures increases filtration and natriuresis. In animal models, elevation of renal venous pressure, even to values as high as 30–50 mmHg, are not associated with significant changes in either renal blood flow or GFR. However, these animals did not have heart failure and the increase in venous pressure was isolated to the renal vein (23, 25, 38). In the setting of CHF, however, the renal response to increased atrial pressure appears to be abnormal. Elegant work by Zucker et al. (43) demonstrated that increases in atrial pressure and dimensions lead to a brisk natriuresis in normal dogs but not in those with CHF. Other studies demonstrated that atrial distension in the setting of heart failure is associated with a paradoxical increase in renal sympathetic nerve activity compared with a sympatholytic effect in normal animals (12, 42). These observations are relevant to the findings presented here, since they suggest a mechanism by which increased atrial pressures in the setting of CHF can lead to increases in sympathetic activity with subsequent adverse effects on renal function. Increased renal sympathetic activity can modify glomerular filtration pressure and is associated with increased sodium absorption and with augmented renin release (13). Renal sympathetic activity was elevated in the current CHF population, compared with the group without CHF; however, this measure was not an independent determinant of GFR. Importantly, this does not mean that renal sympathetic activity has no impact on renal filtration in CHF but rather that it is not an independent determinant.

The current observations suggest that therapy aimed at reducing filling pressures would be an obvious therapeutic aim. We acknowledge that the current interventions were short (30–40 min) and did not involve the use of diuretics. Clinical experience makes it clear that the response to therapy directed at relieving congestion has variable effects and, unfortunately, is often associated with deterioration in renal function. Although we did not find that changes in blood pressure (or cardiac output) were independently related to the changes in renal function in patients with CHF, this does not imply that such systemic effects have no impact on GFR or renal blood flow. Renal function is at most risk when interventions aimed at reducing congestion are associated with significant reductions in systemic arterial blood pressure, a finding that has been clearly documented when such interventions are sustained over several days (15, 40). Furthermore, it must be emphasized that increases in cardiac filling pressure are not always representative of an increase in total body volume. Recent commentaries have served to remind us of this fact, pointing out that in some patients, intra-thoracic congestion can result from a shift in volume from the intra-abdominal capacitance veins (17). Similarly, changes in cardiac filling pressure are not necessarily dependent on changes in venous blood volume as, in some cases, they may be mediated by changes in the compliance or distensibility of venous capacitance system. As such, changes in cardiac filling pressures during therapy may not correlate with changes in volume or weight loss, a finding that has recently been convincingly reported (3). Making matters more complicated is the fact that patients with CHF routinely receive (30–40 min) and did not involve the use of diuretics. Clinical experience makes it clear that the response to therapy directed at relieving congestion has variable effects and, unfortunately, is often associated with deterioration in renal function. Although we did not find that changes in blood pressure (or cardiac output) were independently related to the changes in renal function in patients with CHF, this does not imply that such systemic effects have no impact on GFR or renal blood flow. Renal function is at most risk when interventions aimed at reducing congestion are associated with significant reductions in systemic arterial blood pressure, a finding that has been clearly documented when such interventions are sustained over several days (15, 40). Furthermore, it must be emphasized that increases in cardiac filling pressure are not always representative of an increase in total body volume. Recent commentaries have served to remind us of this fact, pointing out that in some patients, intra-thoracic congestion can result from a shift in volume from the intra-abdominal capacitance veins (17). Similarly, changes in cardiac filling pressure are not necessarily dependent on changes in venous blood volume as, in some cases, they may be mediated by changes in the compliance or distensibility of venous capacitance system. As such, changes in cardiac filling pressures during therapy may not correlate with changes in volume or weight loss, a finding that has recently been convincingly reported (3). Making matters more complicated is the fact that patients with CHF routinely receive multiple different drugs that can have direct and indirect effects on renal function. The summative effects of such different lines of therapy on intracardiac pressures, intravascular volume, and renal function can, in the individual patient, be very difficult to predict. These complex relationships are becoming increasingly recognized and have been nicely summarized in recent publications (17, 41).

Diuretic therapy, particularly loop diuretic therapy, plays a central role in the therapy of congestion. However, diuretics have multiple effects that can modify renal function. They can
Fig. 2. Univariate relationship between the change in GFR and the change in right atrial pressure in the group without CHF (A) and those with chronic CHF (B). Univariate relationship between the change in GFR and the change in renal perfusion pressure in the group without CHF (C) and those with chronic CHF (D). Univariate relationship between the change in GFR and the change in mean arterial pressure in the group without CHF (E) and those with chronic CHF (F).
impact intravascular volume and sodium balance, with secondary effects on systemic blood pressure and cardiac output as well as neurohormonal responses. They also have vasoactive effects (both systemic and intrarenal) that are time dependent (14, 18). Less obvious to the practitioner is the fact that diuretics can have important direct effects on renal function modifying GFR through both their vasoactive effects and their ability to alter distal tubular sodium delivery, via the tubuloglomerular feedback mechanism.

The observation that elevated cardiac filling pressures are associated with reduced GFR, combined with the finding that lowering filling pressure appears to improve renal filtration, serves to emphasize that relief of congestion remains a priority not only for the management of symptoms but also, potentially, because it may improve renal function. However, the recognition that diuretics can have deleterious effects on renal function, even in the absence of volume contraction or systemic hypotension, serves to emphasize that better strategies to manage congestion and lower cardiac filling pressures without having adverse effects on renal function are urgently required. To date, other approaches to reducing intravascular volume have focussed on the use of ultrafiltration, but here too adverse effects of such volume reduction on renal function are well documented (5, 9).

The data presented here provide unique information concerning the relationship between baseline hemodynamic parameters and renal sympathetic activity. Along with the heart, the kidney is subject to increased renal sympathetic activity in patients with chronic CHF (22). Cardiac filling pressures and pulmonary artery pressures are closely correlated with increased cardiac sympathetic activity (24); a positive correlation that is not predicted by normal physiology. In the current data set, there was no systematic relationship between filling pressures and renal sympathetic activity at baseline, which, to our knowledge, has not been reported previously in humans. It is of interest that during a hemodynamic intervention a reduction in right atrial pressure did predict a decrease in renal sympathetic activity. The response was similar to that observed for cardiac sympathetic activity in patients with CHF where acute reductions of cardiac filling pressures, in the absence of systemic blood pressure reduction, have a sympathoinhibitory effect (4). It is also consistent with prior observations in animal models of CHF in which increase in right atrial pressure were associated with paradoxical increases in sodium avidity and renal sympathetic activity (12, 42).

This study provides novel information relating detailed hemodynamic and neurochemical parameters to direct measures of GFR and RPF. However, it is important to emphasize a number of limitations. First, the CHF population studied had severe LV systolic dysfunction but were stable and well compensated at the time of the study. As such, their responses may not be symmetric with what would be observed in a population with acute decompensated CHF. Second, as mentioned above, the hemodynamic interventions were brief and, although they provide unique insight into the apparent salutary effects of lowering cardiac filling pressures in those with CHF, their short duration cannot be used to predict longer term responses and the superimposed effect of concurrent diuretic therapy. Third, the drugs used here have complex pharmacodynamic actions that include direct renal, systemic vascular, and central effects and their impact on renal functional responses may well be different compared with other pharmacological and non-pharmacological interventions. Fourth, the background medical therapy of these patients may well have an impact on the observed responses. Finally, although we have documented a relationship between drug-induced changes in filling pressure and GFR, it is clear other factors play a role in mediating the GFR response to these interventions. Future studies should expand the current observations to longer time periods and evaluate the impact of diuretic therapy and/or ultrafiltration on these direct measures of RPF and glomerular filtration while exploring the impact of therapy on renal tubular handling of sodium in an effort to better understand the impact of tubuloglomerular feedback on renal vascular resistance and GFR.

Perspectives and Significance

Venous congestion is an important determinant of GFR and RPF in patients with CHF. The current findings confirm that increased cardiac filling pressures have an impact on baseline GFR and that acute reduction in these pressures is associated with an increase in GFR. In contrast, RPP and CI did not play a significant role in the regulation of renal function at baseline or in response to pharmacological interventions in this CHF population. An improved mechanistic understanding of the renal functional responses to therapies designed to relieve congestion is required and should help devise therapeutic approaches that allow relief of congestion without the adverse effects on renal that are so commonly seen today.

REFERENCES

