Effect of (±)-epibatidine, a nicotinic agonist, on the central pathways controlling voiding function in the rat

Sun-Ju Lee¹², Yasuo Nakamura ¹³ and William C. de Groat¹

¹ Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA, 15261
² Department of Urology, Kyung Hee University College of Medicine, Seoul, Korea, 130-702
³ Department of Urology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, 920-8641, Japan

Running head: epibatidine on central pathways controlling voiding

Contact information:

Sun Ju Lee

Department of Pharmacology, University of Pittsburgh School of Medicine

200 Lothrop street, E1303 Biomedical Science Tower

Pittsburgh, Pennsylvania, 15261

Telephone: 1-412-648-9351
Fax: 1-412-648-9377
Email: sjlee@khu.ac.kr

Copyright (c) 2003 by the American Physiological Society.
ABSTRACT

Nicotinic receptors in the brain modulate the release of many transmitters that are known to regulate voiding. This prompted us to examine the central nervous system effects of a neuronal nicotinic agonist, (±)-epibatidine, on voiding function in awake and anesthetized rats. Intracerebroventricular (i.c.v.) injection of (±)-epibatidine (0.1 µg) significantly increased intercontraction interval (ICI), but did not change pressure threshold (PT), or maximal voiding pressure (MVP); whereas 1 µg of (±)-epibatidine increased PT, MVP (P<0.05) and decreased ICI. A low i.v. dose of (±)-epibatidine (0.001-0.1 µg) had no effect; however, a large dose of (±)-epibatidine (1 µg) significantly decreased ICI and increased MVP (P<0.05) but did not change PT (P<0.05). The effects occurred within 5-10 min after injection and persisted for 1-2 h. I.c.v. chlorisondamine (10 µg), a nicotinic receptor antagonist, blocked the effect of i.c.v. (±)-epibatidine (0.1 µg). The experiments revealed that activation of nicotinic receptors in the brain increased bladder capacity in awake and anesthetized rats. These results suggest that the nicotinic agonist can activate mechanism that inhibit voiding reflexes.

Keywords: nicotinic acetylcholine receptors, central nervous system, voiding function, epibatidine, chlorisondamine
INTRODUCTION

Cholinergic mechanisms are involved at various sites in the neural pathways controlling voiding function. In the peripheral nervous system acetylcholine is the major excitatory transmitter at: (a) the parasympathetic neuroeffector junction in the bladder, (b) in sympathetic and parasympathetic ganglia and (c) at the neuromuscular junction in urethral striated muscle (6, 12). In the bladder the effects of acetylcholine are mediated by muscarinic receptors, whereas in ganglia and at the neuromuscular junction nicotinic receptors are involved (5).

Experimental studies in animals have raised the possibility that acetylcholine is also a transmitter in the central neural pathways controlling bladder activity. Injections of cholinergic agonists into the region of pontine micturition center in cats elicited inhibition or excitation depending the site of the injection (21). The effects were antagonized by atropine indicating a role of muscarinic receptors. Administration of bethanechol, a muscarinic agonist to the brain of the dog by a vascular cross perfusion technique reduced bladder capacity and increased maximal voiding pressure (14). In the rat, intracerebroventricular (i.c.v.) injection of oxotremorine-M, a muscarinic agonist, elicited both inhibitory and excitatory effects that were blocked by atropine (9). I.c.v. administration of atropine alone decreased maximal voiding pressure and increased bladder capacity indicating that excitatory mechanisms are tonically active in controlling voiding function. Recent experiments revealed that second messenger pathways involving protein kinase C are involved in the central muscarinic inhibitory control of bladder activity in the rat (13).

The demonstration of central muscarinic cholinergic mechanisms in micturition raises the possibility that nicotinic receptors might also be involved in the control of voiding function. Nicotinic receptors are widely distributed in the central nervous system (20) and have a prominent modulatory effect on various types of synaptic transmission. Activation of nicotinic receptors on presynaptic terminals enhances the release of many transmitters including: norepinephrine, dopamine, glutamic acid, acetylcholine and serotonin (3, 10, 17, 18, 24) all of which have been implicated in the central neural control of bladder function (5).

Administration of nonselective neuronal nicotinic receptor agonists such as nicotine or (±)-epibatidine, exo-2-(6-chloro-3-pyridyl)-7-azabicyclo-[2.2.1] a toxic agent from frog skin, produces prominent
changes in central nervous system activity including improvement in cognitive functions, changes in motor behavior, analgesia, nausea and vomiting (4, 11, 22, 25). Agents with selective nicotinic receptor agonist actions have recently been synthesized (4) and are being evaluated for their efficacy in the treatment of various disorders ranging from Alzheimer’s disease, pain to attention deficit hyperactivity disorder (1).

In the present experiments we examined the role of central nicotinic receptors in micturition by studying the effect of i.c.v. and intravenous (i.v.) administration of the nicotinic agonist, (±)-epibatidine, and the nicotinic antagonist, chlorisondamine, on voluntary and reflex voiding function in awake and anesthetized female rats, respectively.
MATERIALS AND METHODS

Animal preparations

Voiding was studied in urethane anesthetized (1.2 g/kg subcutaneous) or awake female Sprague-Dawley rats (250 to 300 gm, Hilltop Lab., Scottdale, PA, USA). In the latter group of animals surgery was performed under halothane anesthesia (2% in oxygen). To implant the i.c.v. catheter, the rats were positioned in a stereotaxic frame, a scalp incision was made over the sagittal suture, and a hole (diameter: approximately 1.0 mm) was drilled in the right parietal bone to expose the dural surface 1.0 mm lateral and 0.3 mm anterior to the bregma according to the atlas coordinates of Paxinos and Watson (15). A sterile, stainless steel catheter (O.D. 0.6 mm, I.D. 0.3 mm, length 10.5 mm) was lowered 5.3 mm ventrally from the bregma with a micromanipulator. With the aid of a small screw placed in the skull as an anchor, the catheter was fixed to the skull with dental acrylic. Solutions were injected via an infusion catheter (O.D. 0.3 mm, I.D. 0.1mm) inserted into the larger catheter. Single doses of drugs were administered in a volume of 1 μl over a period of 1 min and the infusion catheter was left in place for 1 min after injection to allow for diffusion of the drug solution. At the end of the experiment, Blue Food Color (McCormick and Co., Inc., Hunt Valley, MD) was injected to verify the location of the cannula tip. For i.v. administration of drugs, a catheter (PE 50) was placed in the left jugular vein. Single 200 μl volumes of drug solutions were administered i.v. in sterile physiological saline (0.9 % sodium chloride solution) followed by a 200 μl flush of saline.

The urinary bladder was catheterized using the method of Yaksh et al. (26). The bladder was exposed via a midline abdominal incision. A catheter (PE-50), the bladder end of which was heated to create a collar, was inserted through a small incision in the bladder dome, and a suture was tightened around the collar. The other end of the catheter was passed through subcutaneous tissue and exited through the skin. After closing the abdominal incision by suturing the muscle and skin, rats that were to be studied without anesthesia were placed in a restraining cage for 5-6 h (including 2 h of recovery from halothane) that was large enough to permit them to adopt a normal crouching posture, but narrow enough to prevent them from turning around. The rats were subsequently allowed to recover from halothane anesthesia.

The bladder catheter was connected via a T-stopper to a pump for continuous infusion of
physiological saline and to a pressure transducer. Physiological saline was infused at room temperature into
the bladder at a constant rate of 0.04 ml/min to elicit repeated voiding responses. The volume-evoked
micturition reflexes were studied in urethane anesthetized and conscious, restrained rats. All animal care and
surgical procedures were approved by the Institutional Animal Care and Use Committee at the University of
Pittsburgh.

Evaluation

In all experiments, control cystometrograms (CMG) were recorded for about 2 h prior to i.c.v. and i.v.
injection of vehicle or drug solutions. Dose-response curves were constructed by administering increasing
doses of (±)-epibatidine (0.001-1 µg in 1 µl, i.c.v.; 0.001-1 µg in 200 µl, i.v.) at 30 min to 2 h
intervals. (±)-epibatidine was administered about 30 min after vehicle (artificial cerebrospinal fluid, ACSF; 1
µl, i.c.v. or saline solution, 200 µl, i.v.). Chlorisondamine (10 µg, 1 µl, i.c.v.), a nicotinic acetylcholine
receptor antagonist was injected 10-30 min prior to (±)-epibatidine via the i.c.v route in some experiments to
block the effect of the agonist. The intravesical pressure to induce micturition (PT), MVP (maximal voiding
pressure) and ICI (the interval between voids or reflex bladder contractions) were measured (28) and
converted into percent change from control values. The presence of non-voiding contractions, occurring at
peak pressures greater than 10 cm H2O during bladder filling after (±)-epibatidine injection, was also noted.
These parameters were measured for each CMG.

Drugs

Drugs used in this study included halothane (Ayerst Lab. Inc., Philadelphia, PA, USA), urethane
(Sigma Chemical Co., St Louis, MO), (±)-epibatidine (nAChR agonist; Sigma Chemical Co., St. Louis, MO),
chlorisondamine (nAChR antagonist; Ciba Giegy, Summit, NJ). For i.c.v. injection, (±)-epibatidine and
chlorisondamine were dissolved in artificial cerebrospinal fluid (ACSF) (8).

Statistical analysis
A repeated measures one-way analysis of variance with drug dose as the repeated measure was used for analysis of (±)-epibatidine effects. For post hoc analysis, the Bonferroni test was employed. An unpaired student t test was used for analysis of the differences in effects between anesthesized and awake groups. Data are presented as means ± S.D. P < 0.05 was considered statistically significant.
RESULTS

Effect of (±)-epibatidine via i.c.v. injection in awake rats

In awake rats (n=7) in which voiding parameters were not changed after i.c.v. injection of ACSF (ICI: 521.8 ± 158.4 s, PT: 10.2 ± 3.0 cmH20, MVP: 35.1 ± 1.5 cm H20). (±)-epibatidine elicited changes in the cystometrogram which varied according to the dose (Fig. 1). Low doses of (±)-epibatidine (0.001 to 0.01 µg) did not alter any CMG parameter, whereas a moderate dose (0.1 µg) significantly increased the ICI (217 ± 41.4 % of control) (P<0.05), but did not change PT (140.0 ± 9.8 % of control) or MVP (112.5 ± 10.1 % of control). The change in the ICI was apparent within 5-10 min. A high dose (1 µg) of (±)-epibatidine induced a large increase in bladder pressure (Figs. 1, 3) accompanied by movement of the animal and suppression of respiration. The rise in bladder pressure occurred 2-3 min after injection and persisted for 10 s-3 min and was followed by recovery of intermittent voiding which occurred at significantly (P <0.05) increased PT (167.1 ± 6.3 % of control) and MVP (173.1 ± 13.1 % of control) (P<0.05) and a small, but insignificant decrease in the ICI (64.3 ± 7.0 % of control) (P>0.05). Nonvoiding contractions occurred after the high dose (1 µg) of (±)-epibatidine but not after lower doses. Duration of action was 1-2 h (Fig. 2).

I.c.v. injection of chlorisondamine (10 µg in 1 µl volume) in awake rats did not change CMG parameters significantly. However, this dose of chlorisondamine administered 10–30 min prior to (±)-epibatidine blocked the effects of a moderate dose (0.1 µg) of (±)-epibatidine, but did not block the initial large rise in intravesical pressure, the movements or suppression of respiration induced by 1 µg (±)-epibatidine (Fig. 3). In chlorisondamine pretreated rats, (±)-epibatidine (1 µg) did not change the ICI (98.8 ± 30.1 % of control) (P>0.05).

Effect of (±)-epibatidine via i.c.v. injection in urethane anesthesized rats

In anesthetized rats (n=4) voiding parameters were not changed after injection of ACSF (ICI: 251.6 ± 74.9 s, PT: 13.8 ± 1.5 cm H20, MVP: 28.2 ± 1.5 cm H20). Low i.c.v. doses of (±)-epibatidine (0.001 to 0.01
µg) did not significantly change (P>0.05) the CMG. However, 0.1 µg (±)-epibatidine significantly increased the ICI (191.3±26.9 % of control) without significantly changing PT (128.5±15.9 % of control) or MVP (122.6±4.8 % of control). A high dose (1 µg) of (±)-epibatidine also induced an initial large increase in bladder pressure and suppression of respiration similar to the effects elicited in awake rats. The high dose of (±)-epibatidine (1 µg) also significantly increased the MVP (204.1±12.1 % of control) and PT (182.3±42.7 % of control) (P<0.05) but did not significantly (P>0.05) change the ICI (78.8±33.2 % of control) (Fig. 4).

Effect of (±)-epibatidine via i.v. injection in urethane anesthesized rats and awake rats

I.v. injection of normal saline did not alter any CMG parameter in anesthetized (n=4) or awake rats (n=6) (ICI: 257.3±93.7 and 207±60 s, PT: 11.0±2.9 and 14.1±1.8 cm H$_2$0, MVP: 32.4±4.0 and 34.6±7.9 cm H$_2$0). Low and moderate i.v. doses of (±)-epibatidine (0.001 to 0.1 µg) did not significantly change ICI, PT, and MVP in anesthetized and awake rats. However, a high dose (1 µg) of (±)-epibatidine significantly decreased ICI (anesthetized: 33.6±8.5 % of control, awake: 45.2±7.1 % of control) and increased MVP (anesthetized: 190.5±40.2 % of control, awake: 185.5±10.0 % of control) but did not significantly change PT (anesthetized: 122.3±50.6 % of control, awake: 161.6±14.8 % of control) (Fig. 5).
DISCUSSION

The present results indicate that activation of nicotinic receptors in the brain by small doses of (±)-epibatidine increases the voiding interval during continuous infusion cystometry in both awake and anesthetized rats without altering voiding pressure. This effect in awake rats was blocked by i.c.v. injection of chlorisondamine, a neuronal nicotinic acetylcholine receptor (nAChR) antagonist in doses which alone did not alter voiding function. These findings suggest that nicotinic mechanisms in the brain have the potential for exerting an inhibitory influence on micturition, but that under the conditions of our experiments these mechanisms were inactive prior to administration of (±)-epibatidine.

Because (±)-epibatidine is able to pass through the blood-brain-barrier, one question that arises in the present experiments is the site of action of the drug following i.c.v. administration. Nicotinic receptors are not only present in the central nervous system but also in peripheral autonomic ganglia in the sympathetic and parasympathetic efferent pathways to the urinary bladder and therefore it is possible that (±)-epibatidine administered i.c.v. could diffuse into the systemic circulation and alter voiding function by an action in the peripheral nervous system. However this seems unlikely for several reasons. Firstly, moderate doses of (±)-epibatidine (0.1 μg) that were active by i.c.v. injection were inactive following i.v. injection. Secondly, the effect of (±)-epibatidine after i.c.v. injection occurred within 5-10 min. This time onset is similar to that of other agents administered i.c.v. or systemically (9,16) and seems insufficient time for a direct action on the peripheral nervous system after diffusion out of the brain into the blood stream. The time onset also reduces the possibility that (±)-epibatidine acted on nAChR in the spinal cord. Thirdly, chlorisondamine, a quaternary drug, that is retained in the brain after i.c.v. injection blocked the effect of 0.1 μg (±)-epibatidine. This antagonism should only occur if (±)-epibatidine were acting in the brain.

However the site of action of high doses of (±)-epibatidine which produced a rise in intravesical pressure and reduced the voiding interval is less clear, because large doses of (±)-epibatidine administered i.v. produced similar effects and chlorisondamine injected i.c.v. was not able to block the effect of (±)-
epibatidine. Thus, large i.c.v. doses of (±)-epibatidine might enter the peripheral circulation and stimulate parasym pathetic ganglia to induce a bladder contraction. Alternatively, large doses of (±)-epibatidine might act in the central nervous system (CNS) on nAChR which had not been accessed by chlorisondamine due to the relatively short pretreatment time. Chlorisondamine is more hydrophilic than (±)-epibatidine and therefore is likely to require a long time for diffusion throughout the brain. Another concern in interpreting the effect of the large dose of (±)-epibatidine is that this dose induced respiratory changes as well as limb and body movements. Thus, it is possible that changes in intra-abdominal pressure were transmitted to the bladder and this contributed to the apparent facilitatory effect of the drug on voiding.

(±)-epibatidine has not only a potent stimulatory effect on nAChR subtypes in the brain (α4β2) but also in sympathetic and parasym pathetic ganglia (α3β4) and at the neuromuscular junction (α1β1γδ) (22). Thus, the excitatory effects of i.v. injection of (±)-epibatidine (1 μg) on voiding function shown by decreased ICI and increased MVP could be due to stimulation of the parasym pathetic excitatory input to the bladder as well as stimulation of sympathetic input to the urethral smooth muscle or direct stimulation of nicotinic receptors in the striated muscle of the urethra which would increase outlet resistance. Effects of (±)-epibatidine on peripheral nAChR can also produce hypertension and striated muscle effects both of which limit the clinical use of nicotinic agonists (19, 22).

Although the CNS site of the inhibitory action of (±)-epibatidine on micturition is uncertain it seems reasonable to conclude that the drug depresses the afferent limb of the micturition reflex in anesthetized rats and depresses the sensory pathways that induce voluntary voiding in awake rats because the drug decreased voiding frequency without altering voiding pressure. If the efferent pathway from the brain to the sacral parasympathetic nucleus or sphincter motor nucleus in the spinal cord were affected by the drug, it would be expected that peak voiding pressure would be changed. The decrease in voiding frequency after (±)-epibatidine could be produced by inhibition of transmission of afferent signals in the spinal cord or inhibition of afferent processing in the brain stem pontine micturition center or in centers in the forebrain involved in voluntary voiding (Fig. 6). However, there was no significant difference between the effect of (±)-epibatidine on CMG parameters in urethane anesthetized and awake rats. Since voiding in anesthetized animals is reflex
and presumably involves circuitry in the brain stem and spinal cord but is not dependent on forebrain circuits; this raises the possibility that (±)-epibatidine acted on the brain stem to alter voiding in both groups of animals.

Activation of nAChR is known to enhance the release of various CNS transmitters including glutamate, serotonin, norepinephrine, acetylcholine and dopamine (3, 10, 17, 18, 24). Previous pharmacological studies in animals showed that activation of the receptors for these transmitters in the brain can under certain conditions inhibit voiding function, reduce voiding frequency and increase bladder capacity (7, 23, 27). For example, activation of descending 5-HT pathways projecting from the brain stem raphe nucleus to the spinal cord can increase bladder capacity and produce effects similar to those induced by (±)-epibatidine. Activation of bulbospinal 5-HT pathways has also been implicated in the analgesic effects of neuronal nicotinic agonists (2). In addition, activation of muscarinic receptors in the brain or spinal cord can increased the ICI raising the possibility that an enhancement of ACh release by (±)-epibatidine can be involved in its inhibitory effect on voiding. Thus in future experiments it will be important to evaluate the downstream mechanisms involved in the suppression of voiding by nicotinic receptor agonists.
ACKNOWLEDGMENTS

This work was supported by NIH grants DK49430.
REFERENCES

7. de Groat WC, and Yoshimura N. Pharmacology of the lower urinary tract. Annu Rev Pharmacol Toxicol

16. Quin C, Li T, Shen TY, Libertine-Garahan L, Eckman J, Biftu T, and Ip S. Epibatidine is a nicotinic

Figure legends and table

Fig. 1. The effects of a moderate and high dose of i.c.v. (±)-epibatidine on the CMG in the awake rat. CMGs were recorded 0 to 30 min after i.c.v. injection of (±)-epibatidine. Note artificial cerebrospinal fluid (ACSF) and low dose of (±)-epibatidine did not affect the ICI. A moderate dose of (±)-epibatidine increased the ICI, whereas a high dose of (±)-epibatidine (lower trace) induced an initial bladder contraction and decreased the ICI.

Fig. 2. Duration and reproducibility of the effect of i.c.v. (±)-epibatidine in the awake rat. ACSF did not affect on CMG parameters (upper trace). Moderate dose (0.1 µg) of (±)-epibatidine increased ICI, which gradually recovered over the course of 90 min. Second administration (0.1 µg) of (±)-epibatidine produced a similar effect (lower trace).

Fig. 3. The inhibitory effects of i.c.v. (±)-epibatidine (0.1 µg) on voiding were blocked by pretreatment with i.c.v. chlorisondamine in the awake rat (third trace). However, the initial excitatory effect of 1 µg (±)-epibatidine was not antagonized. CMGs were recorded 0 to 30 min after i.c.v. injection of each solution. Tracings represent continuous recordings of bladder pressure.

Fig. 4. Changes in CMG parameters after i.c.v. injection of (±)-epibatidine in awake (n=7) and anesthesized (n=4) rats. Each histogram represents the mean ± S.D. *P < 0.05 compared to the effect of ACSF (% of control).
Fig. 5. The effect of a large dose 1 µg (±)-epibatidine i.v. to increase MVP and decrease ICI (A, B) was similar to the effect of same dose i.c.v. However, a moderate dose 0.1 µg (±)-epibatidine i.v. had no effect on ICI (A). Experiments were conducted in 6 awake and 4 urethane anesthetized rats. Each histogram represents the mean ± S.D. *P < 0.05 compared to ACSF (% of control).

Fig. 6. (±)-epibatidine has two effects on voiding function: inhibitory in the CNS and excitatory which maybe mediated in part by an action on the CNS and in part by an action on peripheral neuronal nicotinic receptors in bladder ganglia.
A

B

Dose epibatidine (µg)

ICl (% of control)

Dose epibatidine (µg)

MVP (% of control)

* *
Moderate i.c.v. dose (0.1 μg) of epibatidine (-) suppresses the afferent limb of both the voluntary and reflex voiding pathways.

High i.c.v. dose (1 μg) of epibatidine may enhance bladder activity.

(+): i.v. epibatidine