Epigenetic changes in gene expression.

Focus on “The Liver X-Receptor (LXR) gene promoter is hypermethylated in a mouse model of prenatal protein restriction"

Barbara T. Alexander

Running Title: Editorial focus

To whom correspondence should be addressed:
Barbara T. Alexander, Ph.D.
Department of Physiology and Biophysics
University of Mississippi Medical Center
2500 North State Street
Jackson, MS 39216-4505
Phone: 601-984-1831
FAX: 601-984-1817
email: balexander@physiology.umsmed.edu
The term epigenetics was first coined in 1942 by Waddington (20) to describe the interaction of genes with their environment during development that give rise to a phenotype. Today, the term epigenetics is used when describing a phenotype that occurs in a manner outside ‘conventional genetic interactions’ and refers to stable and heritable alterations in gene expression that do not involve a change in DNA sequence (9). DNA methylation is one type of epigenetic mechanism that serves as a post-replication modification and can occur in response to environmental influences (14). DNA methylation, which involves the modification of cytosines found in the dinucleotide sequence CpG (9), can activate or suppress transcription, is reversible (9), and plays a critical role in normal mammalian cell differentiation and development (14). DNA methylation is also implicated in the pathology of many age-related diseases such as cancer (6) and importantly, epigenetic modification of the genome can allow for stable transmission of gene activity to the next generation (9).

The Developmental Origins of Health and Disease (DoHAD) refers to the process by which the phenotype of a fetus is altered in response to environmental influences (2). The DoHAD hypothesis originated from a geographical correlation of infant mortality and ischemic heart disease (2). Based on this study Barker proposed that adverse environmental influences during early development permanently alter the body's structure, function and metabolism in ways that lead to an increased risk for adult cardiovascular and metabolic disease (2). Numerous epidemiological studies now validate this association and numerous experimental studies have investigated potential mechanisms involved in the DoHAD (1); however, the exact link between fetal life and programmed adult disease remains unclear. Although the increased risk of adult health and disease observed in a fetus exposed to environmental stresses implicates epigenetic processes as a possible link (Figure 1), few studies have directly tested this hypothesis.
The rodent model of maternal low protein is well characterized as an experimental model of DoHAD (10). Protein is key for proper fetal growth (3) and a reduction in protein content from a range of 18% to 20% to a range of 9% to 12% in the maternal diet can lead to disproportionate fetal growth, hypertension, cardiovascular disease, and metabolic programming in low protein offspring (1, 3, 10, 19). In addition, reductions in birth weight (3), cardiovascular dysfunction (19), and programmed alterations in methylation of hepatic gene promoters (4) can extend to the next generation. Thus, the mechanism by which maternal low protein leads to DoAHD may involve epigenetic effects mediated via altered DNA methylation of key genes linked to health and disease.

Temporal alterations in lipid metabolism are noted in low protein offspring; similar hepatic triglyceride and cholesterol content are observed at one month of age (5), but increase in low protein offspring with age relative to control (5). Hepatic lipid homeostasis is regulated by a number of nuclear receptors including the peroxisome proliferator-activated receptor alpha (PPAR alpha) and the liver x-receptor (LXR) (11). PPAR alpha and LXR are activated by free fatty acids and cholesterol metabolites respectively, and they modulate lipid homeostasis by activating target genes (8) that initiate the synthesis and uptake of cholesterol, fatty acids, and triglycerides (see 7 or 16 for a complete review). An earlier study by Lillycrop et al. reported that a reduction in methylation of CpG dinucleotides in the PPAR alpha nuclear receptor in 28 day old offspring of low protein dams is associated with an increase in expression of PPAR alpha mRNA and its target gene, Acyl-CoA oxidase (12). Whether hypomethylation of the PPAR alpha gene and increased gene expression persist into adulthood, and whether these changes in gene expression are associated with dysregulation of lipid metabolism are not addressed. However, these findings indicate that epigenetic regulation of the hepatic PPAR alpha gene can
occur in response to a fetal insult and suggests a potential link between adverse influences during fetal life and later adult health.

Although epigenetic processes such as changes in gene methylation are known mediators of transcriptional activation and repression (9), whether the specific hypomethylation pattern of the PPAR alpha gene induced by maternal low protein in offspring can directly influence PPAR alpha gene expression was not determined in the previous study by Lillycrop et al. (12). In this issue of the *American Journal of Physiology-Regulatory, Integrative and Comparative Physiology*, van Straten et al. (17) utilize the DoAHD model of maternal low protein to demonstrate epigenetic modification of another nuclear receptor critical for lipid homeostasis, the LXR. In response to prenatal exposure to low protein, a specific pattern of hypermethylation of CpG dinucleotides in the fetal liver LXR alpha gene promoter was observed at E19.5 in low protein offspring and importantly, was associated with reduced expression of the fetal hepatic LXR alpha gene (17). In addition, expression of LXR alpha target genes that contribute to cholesterol elimination such as the ATP-binding cassette transporters ABCG5 and ABCG8 were also reduced (17). The causal relationship between the specific pattern of CpG hypermethylation of the LXR gene identified in this study and changes in LXR gene expression was directly tested in vitro by use of pharmacological and reporter gene expression assay methodologies (17). Notably, van Straten et al. observed that the specific hypermethylation pattern of the LXR gene induced in response to maternal low protein resulted in a reduction in gene expression in vitro (17). Thus, this study provides further evidence that epigenetic effects may serve as a critical link between the fetal response to a nutritional insult and later adult disease.

However, the overall importance of epigenetic modification of a gene and the transmission of changes in gene expression into pathophysiological relevance is still not clear. In the current
study by van Straten et al. reduced expression of the fetal hepatic LXR gene and other genes involved in cholesterol excretion was associated with a decrease in fetal hepatic cholesterol content (17). In adult mice lacking the LXR alpha receptor, hepatic cholesterol is elevated in response to a dietary challenge of 2% cholesterol suggesting that LXR alpha play a critical role in adult hepatic cholesterol homeostasis (7). Thus, suppression of fetal hepatic LXR alpha gene expression and its target genes was not associated with an increase in fetal hepatic cholesterol content. Cholesterol is critical for many processes during fetal development (15) and the fetus obtains it cholesterol from both endogenous and exogenous sources (21). Expression of rodent fetal hepatic LXR alpha peaks at E18 (15) and previous work by van Straten et al. demonstrate that LXR induced expression of hepatic ABCG5 and ABCG8 is functional in fetal mice (18). However, placental LXR and its target genes may also contribute to cholesterol homeostasis in the fetus (13) and therefore, the importance of programmed changes in the fetal hepatic LXR pathway on fetal lipid homeostasis is not yet clear. Additionally, whether programmed hypermethylation of the LXR alpha gene persists beyond fetal life, is reversed, and/or contributes to changes in adult hepatic cholesterol content and later adult disease are important questions that remain to be tested.

To conclude, the study by van Straten et al. (17) provides critical evidence that modulation of a gene by an epigenetic process such as DNA methylation in response to fetal insult can alter gene expression. Whether these specific epigenetic modifications persist long-term, contribute to later reprogramming of the LXR gene and its target genes, or contribute to an increased risk for adult disease is not yet known. Moreover, whether passage of an epigenetic modification to the next generation is of pathophysiological significance remains unanswered. Hypomethylation of the hepatic PPAR alpha gene in offspring (F1) of maternal low protein dams persists into
adulthood (12) and is transmitted to the next generation (F2) (4). Yet, hypomethylation of the PPAR alpha gene does not translate into an increase in PPAR alpha gene expression in F2 offspring (4). Clearly, additional studies are required to comprehensively address the importance of transgenerational effects of epigenetic mechanisms in the DoAHD. Investigation of these parameters will be critical in determining the overall importance of epigenetic processes as a potential link between fetal responses to environmental influences, the programming of adult health and disease, and the heritable risk of disease in the next generation.

GRANTS

B.T.A. is supported by grants from the NIH, HL074927 and HL51971.

DISCLOSURES

The author has no disclosures.

FOOTNOTES

Address for reprint requests and other correspondence to: Barbara T. Alexander, Ph.D., Department of Physiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505 (email: balexander@physiology.umsmed.edu).

REFERENCES

FIGURE LEGEND

Figure 1. DNA methylation of a gene is a type of epigenetic process that can occur in response to adverse environmental influences. Changes in gene expression associated with an increased risk for adult disease occur in response to adverse environmental influences during critical periods of development. Thus, epigenetic processes may serve as a critical link between insults during fetal life and the increased risk for adult disease.
ENVIRONMENTAL INFLUENCE / Maternal protein restriction

EPIGENETIC MECHANISM / DNA Methylation

Altered target gene expression

ALTERED PHENOTYPE / Tissue dysfunction

Developmental Origin of Health and Disease