Cardiac and metabolic changes in long-term high fructose-fat fed rats with severe obesity and extensive intramyocardial lipid accumulation.

Lene N Axelsen¹², Jacob B Lademann², Jørgen S Petersen¹, Niels-Henrik Holstein-Rathlou², Thorkil Ploug², Clara Prats², Henrik D Pedersen¹, and Anne Louise Kjølbye¹.

¹) Zealand Pharma A/S, Smedeland 36, DK-2600 Glostrup, Denmark; ²) Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.

Running head: Characterization of fructose-fat fed rats

Corresponding author:
Lene N Axelsen MSc
Department of Biomedical Sciences, University of Copenhagen
Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
Tel: +45 3532 7427
Fax: +45 3532 7418
E-mail: lax@mfi.ku.dk
Abstract

Metabolic syndrome and obesity related diseases are affecting more and more people in the Western world. The basis for an effective treatment of these patients is a better understanding of the underlying pathophysiology. Here, we characterize fructose and fat fed rats (FFFRs) as a new animal model of metabolic syndrome. Sprague-Dawley rats were fed a 60 kcal% fat diet with 10% fructose in the drinking water. After 6, 12, 18, 24, 36, and 48 weeks of feeding, blood pressure, glucose tolerance, plasma insulin, glucose, and lipid levels were measured. Cardiac function was examined by \textit{in vivo} pressure volume measurements and intramyocardial lipid accumulation was analyzed by confocal microscopy. Cardiac AMP-activated kinase (AMPK) and hepatic phosphoenolpyruvate carboxykinase (PEPCK) levels were measured by Western blotting. Finally, an ischemia-reperfusion study was performed after 56 weeks of feeding. FFFRs developed severe obesity, decreased glucose tolerance, increased serum insulin and triglyceride levels and an initial increased fasting glucose, which returned to control levels after 24 weeks of feeding. The diet had no effect on blood pressure or hepatic PEPCK levels. FFFRs showed significant intramyocardial lipid accumulation and cardiac hypertrophy became pronounced between 24 and 36 weeks of feeding. FFFRs showed no signs of cardiac dysfunction during unstressed conditions, but their hearts were much more vulnerable to ischemia-reperfusion and had a decreased level of phosphorylated AMPK at 6 weeks of feeding. This study characterizes a new animal model of the metabolic syndrome, which could be beneficial in future studies of metabolic syndrome and cardiac complications.

\textbf{Key Words:} Metabolic syndrome; glucose intolerance; diabetes; animal model; myocardial contractile performance.
Introduction

The human metabolic syndrome is a complex metabolic disorder influenced by genetic and environmental factors (32). The dramatic increase in patients with metabolic syndrome recently seen in Western societies is most likely due to alterations in lifestyle, which includes increased consumption of high-calorie diets and decreased physical activity.

High-fat diets have been widely used to generate obese rodent models, and several studies have revealed that in addition to obesity, high-fat diets also promote hyperglycemia, dyslipidemia and whole body insulin resistance (for recent review see Buettner et al., 2007 (3)). Based on these experiences, it is generally accepted that high-fat diets can be used to generate valid rodent models of the metabolic syndrome with obesity, dyslipidimia, and insulin resistance. However, as reviewed by Buettner et al., the fat content and fat composition of the diet, as well as the feeding period and strain of rat or mice used varies markedly between different studies and these factors significantly impact the outcome (3).

High-fructose and high-sucrose diets have also been used to induce metabolic and physiological alterations in rodents, whereas high glucose feeding does not seem to induce the same pronounced metabolic alterations (43). Both high-fructose and high-sucrose fed rats show increased fasting glucose and triglyceride levels, and high-fructose fed rats develop glucose intolerance and insulin resistance (5; 6; 17; 18; 25). Furthermore, several studies have found that a diet rich in fructose or sucrose induces hypertension in rats (11; 26; 33; 40; 44; 45), whereas a few studies have reported that fructose does not affect blood pressure (1; 41). In contrast to the observed increased
weight gain in high-fat fed rats, high-fructose and high-sucrose diets do not induce increased weight gain (5; 6; 18). However, serum triglyceride levels, hyperinsulinemia, and glucose intolerance seem to be more pronounced in high-fructose fed rats in comparison to high-fat fed rats (18). Finally, high-cholesterol diets have also been found to increase total cholesterol, triglyceride and LDL levels in rats as well as increase mean arterial pressure (14). However, as for high-fructose diets, high-cholesterol diets seem to have no effect on body weight in either mice or rats (10; 16). Based on these observations it seems reasonable to conclude that high-fat fed, high-carbohydrate fed, and high-cholesterol fed rodents develop different phenotypes of the metabolic syndrome. Even so, a high-fat diet (28; 29), a high-fructose diet (17; 27), a high-sucrose diet (5), and a high-cholesterol diet (10) have all been reported to induce cardiac contractile dysfunction in rats or mice.

As high-fat, high-cholesterol, and high-carbohydrate (fructose and sucrose) fed rodents present different characteristics of the metabolic syndrome, it is reasonable to expect that a combination of some of these diets potentially may induce a phenotype of the syndrome more similar to that observed in the majority of humans, i.e. a combination of obesity, hypertension, dyslipidemia, glucose intolerance, and insulin resistance. Furthermore, it can be hypothesized that the potential combination of obesity and hypertension, along with more severe metabolic changes will accelerate the development of cardiac dysfunction. An animal model with such characteristics could be very beneficial to future research in the metabolic syndrome and its cardiac complications.

To date, only a few studies have examined the effects of a high-fat diet combined with high-fructose (36; 38; 41) and the feeding protocols vary between the different studies.
Furthermore, a thorough long-term characterization of such a model has not been conducted. Therefore, we initiated this long-term study to characterize high fructose and fat fed rats (FFFRs) as a diet-induced rat model of metabolic syndrome and to investigate the potential metabolic and cardiac complications that this model might develop. To study the time dependent development of different metabolic abnormalities and pathophysiologic complications, rats were examined every 6 or 12 weeks throughout the 48 week feeding period.

Methods

Animal model

All animal studies were performed according to the Guide for the Care and Use of Laboratory Animals, published by the US National Institutes of Health (NHI publication No. 85-23, revised 1996) and approved by the Animal Experiments Inspectorate of the Danish Ministry of Justice. Four-week-old male Sprague-Dawley rats (Taconic, Ll. Skensved, Denmark) were stratified according to equal weight into two pools containing 10 groups each. One pool (n=8-12/group) received normal chow (4% fat, #1324 DK, Altromin, Lage, Germany) and water, and the other pool (n=8-20/group) received a high fat diet (60 kcal % saturated fat, #D12492, Research Diets, New Brunswick, USA) with 10 % fructose (# F0127, Sigma-Aldrich, Brøndby, Denmark) in the drinking water. In order to avoid bacterial growth in the drinking water, citric acid was added to give a pH of 3.6 in both control and fructose water. All groups had free access to water and chow. Body weight was recorded weekly. Metabolic profile and blood pressure (BP) were evaluated at 6, 12, 18, 24, 36, and 48 weeks of feeding followed by pressure-volume
assessment of cardiac function according to the procedures described below. Following 56 weeks of feeding an ischemia-reperfusion study was conducted in a subset of animals.

Intravenous glucose tolerance test (IVGTT) and blood pressure (BP) measurements in conscious rats

Five days before the IVGTT, chronic catheters (sterile Tygon S-54-HL catheters with 0.76 mm outer diameter; Saint-Germain Performance Plastics, Akron, OH, USA) were placed in the right femoral artery and jugular vein. On the following days, rats were conditioned for restrainers. On the day of the experiment, rats fasted overnight were placed in restrainers. Blood pressure (BP) was measured by connecting the arterial catheter to a pressure transducer (Edwards Lifesciences LLC, Irvine, CA, USA) and pressure signals were recorded and evaluated using Notocord HEM version 3.5 software (Notocord Systems SA, Croissy sur Seine, France). Following 1 hour of continuous BP measurements, a blood sample (~ 10 µL) was collected for determination of fasting blood glucose (Elite Autoanalyser, Bayer, Denmark). Subsequently, IVGTT was initiated by an intravenous bolus injection of glucose dissolved in water (1.0 ml/kg body weight of a 1.0 g/ml solution). Blood samples were collected 1, 3, 5, 10, 20, 30, 45, 60, 90, and 120 min after glucose administration for blood glucose measurements using the Elite Autoanalyser.

Pressure-Volume measurements

One to three weeks after metabolic measurements cardiac performance was evaluated using _in vivo_ pressure-volume measurements. The rat was anaesthetized by inhalation of
5% isoflurane in N₂O:O₂ (1:1). The rat was then placed on a controlled heating pad to keep body temperature constant (37-38°C). A tracheotomy was performed and a polyethylene tube inserted and connected to a Harvard rodent ventilator (Stroke vol.: ~ 10 ml/kg, frequency 70/min). Anesthesia was subsequently maintained by inhalation of 1 – 1.5% isoflurane in N₂O:O₂ (3:7).

The femoral artery catheter was connected to a pressure transducer (Edwards Lifesciences LLC, Irvine, CA, USA) for continuous arterial BP measurement. The venous catheter was used to administer hypertonic (25%) saline for parallel conductance determination. ECG electrodes (Hugo Sachs Elektronik – Harvard Appartus GmbH, March-Hugstetten, Germany) were attached to the rat in order to obtain 3-lead ECG recordings throughout the experiment. The pressure-volume catheter (SPR 838, 9mm, Millar, ADInstruments, Oxfordshire, UK) was inserted via the right carotid artery and positioned in the left ventricle (LV) guided by online pressure and volume signals. The abdomen was opened via a small incision just caudally to the xiphisternum to enable temporary preload reductions by compression of the caudal caval vein using a cotton stick.

A 15 min stabilization period followed by 5 min of steady state LV pressure-volume signals was acquired. Then pressure-volume relations were determined during two consecutive preload reductions, obtained by gently compressing the caudal caval vein. To avoid interference from the ECG electrodes on volume measurements obtained by the PV-catheter, ECG electrodes were disconnected during PV measurements.

In order to correct for parallel conductance (Vp) and derive absolute volumes from the conductance catheter, two intravenous injections of 60 µl 25% saline were given at the
end of the experiment. All pressure-volume experiments were recorded and analyzed using IOX version 2.2 software (EMKA Technologies, Paris, France).

Urine analyses and pathology

Following the pressure-volume studies a cannula was inserted into the bladder for urine collection. Semi quantitative determination of protein and glucose content in the urine was performed using a Combur³-Test strip (Roche, Hvidovre, Denmark). Finally, the heart, right kidney, lung, and liver were removed, trimmed for fat and weighed.

Biochemical analysis

HDL-cholesterol, total cholesterol and triglyceride were measured using an automated spectrophotometer (model 912, Roche/Hitachi, Hvidovre, Denmark). HDL-cholesterol was measured in EDTA plasma using an HDL-cholesterol testing kit (#03030067 122, Roche), whereas total cholesterol and triglyceride were measured in serum using a cholesterol testing kit (#11489232, Roche) and a triglyceride testing kit (#1488899, Roche) respectively. Insulin levels were measured in plasma using an insulin ELISA kit (EZRMI-13K, Linco Research, Missouri, USA). All tests were performed according to the instructions of the kits.

Intramyocardial lipid accumulation

Left ventricular cardiac tissue was pinned down at resting length in Petri dishes coated with Sylgard 184 (Dow Corning, La Hulpe, Belgium), incubated with Krebs Henseleit
Buffer (KHB) containing 1g/L procaine hydrochloride (#P9879, Sigma) and subsequently fixed in 2% depolymerized paraformaldehyde (#4005, Merck) with 0.15% picric acid (#709254, Bie & Berntsen) in 0.1M Sorensen's phosphate buffer (23mM NaH2PO4, 77mM Na2HPO4, pH 7.35) at room temperature for 30 min. The muscles were left for an additional 4½ hours in the fixative at 4°C. Bundles of cardiomyocytes were isolated under a stereomicroscope using fine forceps as previously described (31). Lipid droplets were stained with Bodipy 493/503 (#D-3922, Invitrogen, Taastrup, Denmark) by incubating bundles of cardiomyocytes for 1 hr in PBS containing 20 µg/ml Bodipy followed by washing in PBS. Cardiomyocytes were oriented longitudinally and mounted in Vectashield (#H-1000, Vector Laboratories, Burlingame, CA, USA) on a glass slide. Image stacks were collected with a TCS SP2 (Leica) confocal microscope through a HCX plan APO 63x objective with a numerical aperture of 1.32. The z-distance between planes was set to 0.3 µm. Four consecutive optical planes were used to construct average projections, which were analyzed using MetaMorph software (ver. 6.1.r0, Universal Imaging Corp., San Francisco, CA, USA). The amount of lipid per cardiomyocyte was obtained by quantifying Bodipy emission from a standardized region in single cardiomyocytes, as previously described for analysis of lipid droplets in soleus muscle fibers (31).

Ischemia-Reperfusion study

The rats were anaesthetized with a subcutaneous injection of 2 ml/kg of a 1:1:2 mixture of Hypnorm® (fentanyl citrate 0.315 mg/ml and fluanisone 10 mg/ml, Janssen-Cilag, Birkerød, Denmark), Midazolam (5 mg/ml, Dumex-Alpharma, Copenhagen, Denmark),
and distilled water. Tracheotomy was performed and the rats were ventilated with room air using an Ugo Basile rodent ventilator (Comerio VA, Italy) (tidal volume = 6 ml; frequency = 60 pr. min). The thorax was opened and the aorta exposed and cannulated as previously described (21).

After transfer to the perfusion apparatus (Hugo Sachs Elektronik – Harvard Apparatus GmbH, March-Hugstetten, Germany) an incision was made in the left auricle. A fluid filled balloon (size 7) (EMKA Technologies) was inserted through the left auricle into the left ventricle to allow measurements of left ventricular pressure (LVP). The volume of the balloon was adjusted to give an end-diastolic pressure of approximately 5 mmHg.

A ligature was placed around the left anterior descending coronary artery (LAD) and both ends of the ligature were passed through a small plastic tube enabling induction of ischemia by pressing the plastic tube against the heart and clamping the ends of the ligature.

Two monophasic action potential (MAP) electrodes were placed in direct contact with the epicardial surface of the left ventricle (one in the area at risk of infarction and one outside of the area at risk). In addition, two MAP electrodes were used to obtain unipolar ECG recordings by placing them a few mm from the surface of the left ventricle.

When all electrodes were in place the water bath was elevated to immerse the heart in 37°C Krebs-Henseleit solution. The hearts were perfused in the Langendorff mode at constant perfusion pressure (approx. 60 mmHg) with a pre-warmed (37°C) modified Krebs-Henseleit solution with the following composition (mmol/l): NaCl: 118.0, KCl: 4.7, CaCl₂: 2, KH₂PO₄: 1.2, Mg₂SO₄: 1.2, sodium pyruvate: 2.0, NaHCO₃: 24.9, glucose:
10.0, pH of 7.4-7.5, and an adequate oxygen content of the solution was obtained by continuously bubbling with carbogen (95% O₂/5% CO₂). The experiment was initiated with 30 min of normal perfusion (the equilibration period). Regional ischemia was then introduced by tightening the ligature around the LAD for 30 min. Subsequently, the ligature was loosened and the heart was reperfused for 60 min. At the end of the experiment the ligature around the LAD was clamped again and the heart perfused with Evans Blue dye to evaluate the area at risk of infarction.

All Langendorff studies were recorded and evaluated using Notocord HEM version 3.5 software (Notocord Systems SA, Croissy sur Seine, France).

Western Blots

Twenty to thirty mg of frozen heart (from 6, 24, and 48 weeks of feeding) (n=6-10/group) or liver tissue (from 18, 24, and 48 weeks of feeding) (n=6-11/group) were homogenized with a Polytron PT 3100 (Kinematica AG, Littau-Luzern, Switzerland) in 750 µl of buffer (3% SDS, 10 mM pyrophosphate, 2 mM sodium orthovanadate, 5 mM EDTA, 25 mM Tris-HCl, pH 6.8 and "Complete protease inhibitor cocktail" tablets (Roche Applied Science, Hvidovre, Denmark)) at room temperature, briefly sonicated and stored in aliquots at −80°C. Protein concentrations were determined by the BCA assay (Sigma-Aldrich, Brøndby, Denmark) using bovine serum albumin as a standard.

For Western blot 15 µg of protein was separated by SDS–PAGE on 4-15% Criterion gels (Biorad, Copenhagen, Denmark) and electrophoretically transferred to polyvinylidene difluoride (PVDF) membranes in a tank buffer system (transfer buffer contained 48 mM Tris, 39 mM glycine and 20% methanol). Membranes were blocked in 5% BSA plus
2.5% defatted milk powder in TS buffer (10 mM Tris (pH 7.4), 150 mM NaCl) and incubated for 90 and 60 min with primary and HRP-labeled secondary antibodies, respectively, diluted in blocking solution. Antigen-antibody complexes were visualized by ECL and a CCD system (LAS-3000 (Luminescent Image Analyser, Fujifilm, Japan)) and quantitated by the analysis software "Multi Gauge" (ver. 3.0, Fujifilm). The same 3 randomly chosen samples were included on all gels and the mean value of their specific signals were used as an "internal standard" for normalization between gels. Four different primary antibodies were used: monospecific sheep antibodies against the AMP-activated kinase (AMPK) α1 and α2 isoforms (kindly donated by Grahame Hardie), a rabbit antibody against phosphorylated T172 of the AMPK α subunit (Cell Signaling, Danvers, USA) and a rabbit antibody against phosphoenolpyruvate carboxykinase (PEPCK) (Sigma, Brøndby, Denmark).

Statistical analysis
All data are expressed as mean ± SEM. Data were analyzed with GraphPad Prism (v. 4.01, GraphPad Software Inc., La Jolla, CA, USA) using two-way ANOVA for repeated measurements, followed when appropriate by Bonferroni post-hoc test to determine statistical differences between groups. Differences in plasma lipid levels were analyzed by Student’s t-test. For the ischemia-reperfusion study differences in baseline levels were analyzed by Student’s t-test and the survival curves for the two groups were compared by a log rank test. P<0.05 was considered statistically significant in all tests.
Results

Body weight

Male Sprague-Dawley rats receiving a high fat and fructose diet for 48 weeks (FFFR) developed severe obesity (830.8±17 g) relative to rats fed normal chow (621.8±39g) (Figure 1). There was interaction (p<0.0001) between duration of feeding and diet and the difference between groups was statistically significant from 20 weeks of feeding.

Glucose tolerance, insulin levels, and lipid profile

Fasting blood glucose levels were significantly increased in the FFFRs after 6, 12, and 18 weeks of feeding (Figure 2A). However, following 24, 36, and 48 weeks of feeding FFFRs had similar fasting blood glucose levels as control rats.

Urine glucose content was significantly increased in FFFRs after 12 and 18 weeks of feeding (Figure 2B) and the urine protein content increased with age in both FFFRs and control rats but no difference was observed between the two groups (data not shown).

Glucose tolerance was dependent on both diet and duration of feeding (P < 0.0001), and it was significantly decreased in FFFRs compared to control fed rats after 18, 36, and 48 weeks of feeding (Figure 2C). Furthermore, FFFRs showed increased fasting plasma insulin (P = 0.03 for effect of diet) (Figure 2D) and triglyceride levels (P < 0.001) (Table 1). No statistically significant difference in HDL-cholesterol and total cholesterol was found following 48 weeks of feeding (Table 1).
Blood pressure and heart weight

Neither FFFRs nor control rats showed any change in mean arterial blood pressure throughout the 48 weeks of feeding and no statistically significant difference between the two groups was found at any time point (Figure 3A).

Generally, heart weight, left ventricular (LV)-, and right ventricular (RV)-weight was significantly increased in FFFRs compared to controls from 18 weeks of feeding (Figure 3B-D), but interaction between diet and duration of feeding was only statistically significant for total heart weight and LV weight (P < 0.0001).

No difference in lung or kidney weight could be detected between the two groups (data not shown).

Liver weight and PEPCK protein levels

There was a statistically significant interaction (p = 0.02) between diet and feeding period on the weight of the liver (Figure 4A), and there were macroscopic signs of liver steatosis in the FFFRs. The level of PEPCK was slightly lower in liver tissue from FFFRs compared to control. The decrease was statistically significant following 18 (P < 0.001) and 24 (P < 0.01) weeks of feeding but not following 48 weeks (Figure 4B).

Intramyocardial lipid accumulation and in vivo left ventricular performance

Confocal fluorescence microscopy performed at 6, 12, 19, and 24 weeks of feeding revealed a significant effect of diet on cardiac lipid accumulation (P < 0.0001). Cardiomyocytes from FFFRs showed highly increased lipid accumulation compared to control rats at all time points (Figure 5). Heart rate was slightly higher in FFFRs compared to controls throughout the entire study (P = 0.03) (Figure 6A). Both positive
and negative dP/dt max for the left ventricle were slightly increased in the FFFR group compared to controls throughout the 48 weeks of feeding (P = 0.005 and P < 0.001 respectively) (Figure 6C and 6D), and the diastolic relaxation constant Tau was slightly lower in the FFFR group compared to controls (P = 0.02) (Figure 6E). However, ejection fraction and the end systolic pressure volume relation (ESPVR) remained unchanged between the two groups (Figure 6B and 6F). In addition to the evaluated parameters of left ventricular performance presented in Figure 6; stroke volume, cardiac output, maximal systolic pressure, and minimal diastolic pressure were also evaluated, but no differences were detected between the two groups at any time point (data not shown).

Cardiac AMPK levels

AMP-activated protein kinase (AMPK) levels, i.e. both α1 and α2 isoforms and AMPK phosphorylation (AMPK-P(Thr172)) was measured in hearts from control and FFFRs following 6, 24, and 48 weeks of feeding (Figure 7). The AMPK level was unchanged between the control and FFFR group at all evaluated time points (Figure 7A and 7B), whereas the level of phosphorylated AMPK was significantly decreased (P < 0.01) in hearts from FFFRs at 6 weeks of feeding (figure 7C). However, following 24 and 48 weeks of feeding, the level of phosphorylated AMPK was decreased to similar levels in both FFFRs and controls (Figure 7C).

Cardiac sensitivity to ischemia and reperfusion

Figure 8 shows cardiac performance during ischemia and reperfusion, in isolated perfused hearts from FFFRs and control rats after 56 weeks of feeding.
At baseline, isolated hearts from the FFFRs had statistically significant higher values of positive and negative dP/dt max (P = 0.03 and P = 0.004), higher developed left ventricular pressure (DLVP) (P = 0.01), and lower heart rate (P = 0.045) than control rats. The functional response to 30 min of regional ischemia was similar in the two groups, and so was the area at risk (data not shown). During reperfusion all control hearts recovered to baseline levels whereas 7 of the 9 FFFR hearts went into asystole during the 60 min reperfusion period (P = 0.01 for survival proportions between the two groups) (Figure 8F).

Discussion

A diet rich in fructose and fat induces metabolic syndrome in rats

The diet used in the present study caused pronounced obesity, impaired glucose tolerance, increased fasting serum triglyceride, increased insulin levels, and massive intramyocardial lipid accumulation in male Sprague-Dawley rats, which is in accordance with the WHO definition of the metabolic syndrome (9). In addition, we found that the fasting glucose level was increased in FFFRs compared to control fed rats at 6, 12, and 18 weeks of feeding and the urine glucose level was increased at 12 and 18 weeks. The elevated fasting blood and urine glucose levels normalized over time, and were similar to that in control rats after 24, 36, and 48 weeks of feeding. The reason why blood glucose normalizes is unclear. We did not measure exact water intake during our study. However, judged from the amount of remaining fructose solution in the bottles when they were changed, it seemed as if the FFFRs consumed high amounts of fructose water during the first months of the feeding period and that their water and thus fructose intake decreased
in the later part of the study period. A decreased intake of fructose could therefore contribute to the normalization of blood glucose. The change in glycemic state might also at least partly, be explained by the gradual increase in fasting insulin levels observed in the FFFRs throughout the study. Another possibility could be that as adipose tissue increases in FFFRs throughout the study, so does the uptake of fructose by the adipose tissue, reducing the amount of fructose available for gluconeogenesis by the liver and consequently the blood glucose level. Also, the fructose and fat diet may lead to increased free fatty acid levels in the liver, which have been linked to hepatic insulin resistance and thereby an increased hepatic glucose production (42). This increased glucose production could be responsible for the high glucose levels seen within the first 18 weeks of the study. As more and more triglyceride accumulates in the liver and the animals develop non-alcoholic fatty liver disease (NAFLD) the livers ability to perform gluconeogenesis might be reduced accounting for the fall in blood glucose. Even though NAFLD is believed to be a hepatic manifestation of the metabolic syndrome, and NAFLD patients presents with many features of metabolic syndrome, they do not have elevated fasting glucose levels (30). In an attempt to clarify if the changes in blood glucose over time in FFFRs are connected to changes in gluconeogenesis by the liver we measured hepatic levels of the rate-limiting enzyme for gluconeogenesis, PEPCK (2; 34). At 18 weeks of feeding, where fasting glucose levels were increased in FFFRs, our study showed an approximately 20% decrease in hepatic PEPCK levels between control rats and FFFRs. This is in agreement with the recent finding that fasting hyperglycemia in type 2 diabetic patients is not associated with increased expression of PEPCK or glucose-6-phosphatase (35). At 24 weeks of feeding, when fasting glucose levels had returned to
normal in the FFFRs, hepatic PEPCK protein levels were still decreased in FFFRs compared to controls, whereas there was no statistically significant difference at 48 weeks of feeding. Other studies have shown that 60% and 70% decreases in PEPCK protein levels results in only 33% and 20% reduction in gluconeogenic flux in canines (13) and transgenic mice (4), respectively. Therefore, we conclude that the changes in fasting glucose levels observed over time in our FFFRs can not be explained by changes in hepatic PEPCK levels.

A high fructose and fat diet does not induce hypertension

In this study where 10% fructose in the drinking water was given in combination with 60% fat in the diet for 48 weeks; no effect on blood pressure could be detected at any of the evaluated time points. Only a few other studies report that fructose does not affect BP in male Sprague-Dawley rats (1; 41), whereas most studies find that a diet rich in fructose induces hypertension (11; 26; 33; 40; 44; 45). A possible explanation for the discrepancies regarding the effect of a high fructose diet on BP could be the different methods used for BP measurements. In most studies describing fructose-induced hypertension, the tail cuff method was used for BP measurements. In our study, we used chronically inserted catheters for BP measurements and found no effect on BP. In accordance with our observation no effect of fructose feeding on BP was found in rats chronically instrumented with radiotelemetry BP transmitters (41). Therefore, we hypothesize that high-fructose fed rats are more sensitive to the stress associated with tail cuff BP measurements relative to control fed rats. This theory is further supported by the finding that high-fructose induced hypertension observed using the tail cuff method can
be completely abrogated by chemical sympathectomy (44). Our use of restrainers for the BP measurements may also have caused some degree of stress for the rats. However, in order to minimize the stress our rats were conditioned for the restrainers on three consecutive days prior to experiments, and during BP recordings they were left alone and not handled by humans for one hour. Even so, it can not be excluded that other yet unknown factors might also influence the effect of a high fructose diet on the development of hypertension.

FFFRs have unchanged cardiac function during non-ischemic conditions but increased sensitivity to ischemia-reperfusion injury

In patients with metabolic syndrome, the heart typically has an increased mass, altered diastolic function, and the patients are prone to heart failure (15). In this study, the high fructose and fat diet also resulted in statistically significantly enlarged hearts. The enlargement of the left ventricle seemed to be especially pronounced between 24 and 36 weeks, indicating left ventricular hypertrophy. This is in accordance with previous findings showing that both high fat (28) and high fructose (26) is able to induce an increase in heart weight in rats. A necessary mediator of cardiac myocyte enlargement and thereby cardiac hypertrophy is protein synthesis. Activation of AMPK is known to inhibit protein synthesis associated with cardiac hypertrophy (7; 8) and high fat feeding of rats have been found to impair both the expression and activity of AMPK in skeletal muscles (22). However, our data shows that the expression of AMPK in cardiac tissue is unchanged in FFFRs compared to control fed rats following 6, 24, and 48 weeks of feeding. Furthermore, even though the amount of phosphorylated and thereby activated
AMPK is significantly lower in the FFFRs compared to controls following 6 weeks of feeding, there are no significant differences in phosphorylated AMPK following 24 and 48 weeks of feeding. Therefore, the cardiac hypertrophy observed in the FFFRs cannot be explained by changes in total or activated AMPK.

FFFRs showed pronounced intramyocardial lipid accumulation already 6 weeks into the study and the lipid accumulation remained elevated throughout the study. Increased cardiac lipid accumulation has previously been associated with contractile dysfunction in obese Zucker rats (46; 47), and it has been found to be relatively common in obese and diabetic non-ischemic heart failure patients (39). Despite the morphological alterations found in the hearts of the FFFRs no decrease in cardiac function was observed at any of the evaluated time points. If anything, our data indicate a slightly improved systolic and diastolic function in the FFFRs as both positive and negative dP/dt max were increased compared to the control group. This result was surprising, as a high fat diet for only 8 weeks (29) and a high cholesterol-fructose diet for 15 weeks (12) have been reported to induce a decreased cardiac contractile function in rats.

Since the FFFRs did not show a compromised cardiac function during unstressed conditions in vivo, an ischemia reperfusion study was performed in isolated hearts from a subset of old animals after 56 weeks of feeding. Four weeks of fructose feeding have previously been reported to protect against ischemia-reperfusion injuries in isolated perfused rat hearts (20), whereas the effect of fructose feeding on the outcome of left coronary artery ligation in vivo has been ambiguous (19; 27). In our isolated perfused hearts the baseline values for positive and negative dP/dt max were higher in the FFFR group compared to controls exactly as seen by the in vivo pressure-volume
measurements. Heart rates were higher in the FFFR group compared to controls \textit{in vivo}, but lower in the isolated hearts, suggestive of an increased sympathetic tone in FFFRs. During ischemia and reperfusion the heart rate increased in the FFFR hearts but remained unchanged in control hearts. Beside the changes in heart rate, cardiac function decreased to the same extent in FFFR and control hearts during ischemia. However, during reperfusion cardiac function improved in control hearts, whereas 7 of 9 FFFR hearts went into asystole. Therefore, in contrast to the uncompromised cardiac function found during unstressed conditions \textit{in vivo}, our ischemia-reperfusion experiment clearly showed that long-term intake of high fructose in combination with high fat aggravates the outcome of an ischemic event. The incidence and severity of complications associated with ischemic events are known to be greater in the diabetic population and they seem to be correlated to metabolic changes in the heart (23). However, our knowledge of the effects of obesity and diabetes on cardiac metabolism and function is still limited (23; 24) and future studies are needed to clarify the mechanisms behind the cardiac changes.

\textit{Strength and weaknesses of the study}

This study offers a systematic long-term \textit{in vivo} characterization of cardiac function in a diet induced rat model of metabolic syndrome. To our knowledge, we are the first to look at the time dependent changes in cardiac function and metabolic markers of metabolic syndrome using a combination of a high-fructose and high-fat diet. We have shown that the FFFR model develops several characteristics of metabolic syndrome along with hepatic changes and morphological alterations in the heart. The morphological cardiac changes were not associated with decreased cardiac function during non-ischemic
conditions, but the isolated hearts from the FFFRs were more vulnerable to ischemia-reperfusion injury compared to control rats. Therefore, it would have been an advantage to our study if we had performed the ischemia-reperfusion studies at all time points, enabling us to determine the timeline for the development of functional cardiac changes. Finally, it is important to acknowledge that the fat diet used for our FFFRs contained 60 kcal % fat, which presumably is higher than what is generally consumed by humans with diet induced metabolic syndrome. However, we chose this high fat content hoping that it might accelerate any potential metabolic changes related to the intake of a high fat diet.

For future studies using the FFFRs, an echocardiographic evaluation of heart function could be a significant advantage. Furthermore, given the observed changes in blood and urine glucose, it would also be valuable to measure the actual fructose-water intake. This information could give a better idea about the mechanism responsible for the drop in glucose levels seen between 18 and 24 weeks of feeding.

Perspectives and Significance

The FFFRs is a diet induced animal model showing many of the characteristic features of metabolic syndrome seen in humans. The fat fed or fructose fed rat models, which are commonly used as diet induced models of metabolic syndrome present with different characteristics: Increased serum triglyceride levels are only found in high fructose fed rats, whereas only a high fat diet induces obesity (18). However, fructose induced leptin resistance has been shown to accelerate high fat induced obesity (37). Furthermore, hyperinsulinemia and glucose intolerance seem to be more pronounced in high fructose fed rats compared to high fat fed rats (18). In contrast, the FFFRs present with a
combination of obesity, decreased glucose tolerance, hyperinsulinemia, high plasma triglyceride levels, and initially increased fasting glucose. This, in combination with the highly increased intramyocardial lipid accumulation and an increased sensitivity to ischemia-reperfusion injury, makes the FFFRs an interesting model for future studies on diet induced metabolic syndrome and cardiac complications. Furthermore, it might be possible to make the model even more similar to the human phenotype of metabolic syndrome by inducing hypertension. This could potentially be achieved by applying the feeding protocol to spontaneously hypertensive (SHR) rats or by adding high salt to the feeding protocol. Finally, the model might also prove useful for studies of NAFLD or other diseases related to metabolic syndrome.

Acknowledgement
The authors would like to acknowledge Karin Larsen and Christina Hansen for their excellent technical assistance. Also, we would like to thank all animal technicians involved in the study.

Disclosures
At the time of the study, Lene Axelsen, Henrik Pedersen, Jørgen Petersen, and Anne Louise Kjølbye were all full time employees at Zealand Pharma A/S. Jacob B Lademann, Niels-Henrik Holstein-Rathlou, Thorkil Ploug, and Clara Prats have no conflict of interest to disclose.
Reference List

42. **Stanhope KL and Havel PJ.** Fructose consumption: potential mechanisms for its effects to increased visceral adiposity and induce dyslipidemia and insulin resistance. *Curr Opin Lipidol* 19: 16-24, 2008.

Figure legends:

Figure 1: Body weight of control rats and fructose and fat fed rats (FFFRs) throughout 48 weeks of feeding. Values are presented as mean ± SEM.

Figure 2: (A) Fasting blood glucose levels; (B) Glucose content in the urine; (C) Area under the curve (AUC) from intravenous glucose tolerance tests (IVGTT); (D) Plasma fasting insulin levels from fructose and fat fed rats (FFFR) and control fed rats throughout 48 weeks of feeding. Values are presented as mean ± SEM.

Figure 3: (A) Mean arterial blood pressure in conscious rats; (B) Heart weight; (C) Left ventricular weight; (D) Right ventricular weight in fructose and fat fed rats (FFFR) and in control fed rats throughout 48 weeks of feeding. Values are presented as mean ± SEM.

Figure 4: (A) Liver weight throughout 48 weeks of feeding; (B) Liver phosphoenolpyruvate carboxykinase (PEPCK) protein levels at 18, 24, and 48 weeks of feeding in fructose and fat fed rats (FFFR) and control fed rats. Values are presented as mean ± SEM.

Figure 5: Representative images of intramyocardial lipid accumulation. Lipid droplets, identified by Bodipy emission, are shown in orange. (A) Intramyocardial lipid accumulation in cardiomyocytes from a rat fed normal chow for 24 weeks; (B) Intramyocardial lipid accumulation in cardiomyocytes from a fructose and fat fed rat following 24 weeks of feeding; (C) Quantitative assessment of intramyocardial lipid...
accumulation \((n = 5-6/\text{group})\). Values are expressed relative to the mean value of 6 weeks control and as mean + SEM.

Figure 6: Hemodynamic parameters obtained by *in vivo* pressure-volume measurements in the left ventricle of rats fed normal chow (control) and high fructose and fat fed rats (FFFR). *(A)* Heart rate; *(B)* Ejection fraction; *(C)* Maximum change in pressure over time during systole (dP/dt max); *(D)* Maximum change in pressure over time during diastole (-dP/dt max); *(E)* Diastolic relaxation constant (Tau); *(F)* The slope from the end systolic pressure-volume relation (ESPVR). Values are presented as mean ± SEM.

Figure 7: *(A)* AMP activated kinase (AMPK)α1 protein levels; *(B)* AMPKα2 protein levels; *(C)* AMPK phosphorylated at thr172 (AMPK-P172) / total AMPK protein levels in cardiac tissue from fructose and fat fed rats (FFFR) and control rats at 6, 24, and 48 weeks of feeding. Values are presented as mean ± SEM.

Figure 8: Hemodynamic parameters in isolated hearts from rats fed high fructose and fat diet (FFFR) \((n=9)\) or control diet \((n=3)\) for 56 weeks, following a 30 min equilibration period (Eq), 5 and 29 min of ischemia, and 5, 30, and 60 min of reperfusion (rep) in Langendorff mode. *(A)* Heart rate; *(B)* Coronary flow; *(C)* Maximal increase in systolic pressure over time (dP/dt max); *(D)* Maximal decrease in diastolic pressure over time (-dP/dt max); *(E)* Developed left ventricular pressure (DLVP); *(F)* Percentage of hearts with out asystole. Values are presented as mean ± SEM.
The change in the FFFR group from 5 to 60 min of reperfusion is marked with a dashed line since 7 of 9 hearts went into asystole during this period and only beating hearts are included in the data.
Figure 1:

Weeks of feeding

Body weight (g)

* P<0.05
** P<0.01
*** P<0.001
Figure 2:

A Fasting blood glucose

B Urine glucose

C IVGTT

D Fasting insulin
Figure 3:

A Blood pressure

B Heart weight

C Left ventricle weight

D Right ventricle weight

* p<0.05
** p<0.01
*** p<0.001
Figure 4:

A. Liver weight

B. PEPCK

**P<0.01

*** P<0.001
Figure 5:

A B

C

Total Lipid intensity

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>FFFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 weeks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* P < 0.05
** P < 0.01
*** P < 0.001
Figure 6:

A. Heart rate

B. Ejection fraction

C. dP/dt max

D. -dP/dt max

E. Tau

F. ESPVR
Figure 7:

Panel A: AMPK-α1

Panel B: AMPK-α2

Panel C: AMPK-P172/total AMPK
Figure 8:

A. Heart Rate

B. FLOW

C. dP/dt max

D. dP/dt max

E. DLVP

F. Percentage of hearts without asystole
Table 1: Serum triglyceride, plasma HDL, and serum cholesterol levels in fructose and fat fed rats (FFFR) and control fed rats after 48 weeks of feeding. Values are presented as mean ± SEM. (** p<0.001; non significant (NS)).

<table>
<thead>
<tr>
<th></th>
<th>FFFR</th>
<th>Control</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Triglyceride (mmol/L)</td>
<td>1.72 ± 0.460</td>
<td>0.940 ± 0.067</td>
<td>***</td>
</tr>
<tr>
<td>HDL (mmol/L)</td>
<td>1.95 ± 0.192</td>
<td>2.035 ± 0.117</td>
<td>NS</td>
</tr>
<tr>
<td>Cholesterol (mmol/L)</td>
<td>4.50 ± 0.609</td>
<td>3.87 ± 0.251</td>
<td>NS</td>
</tr>
</tbody>
</table>