Proton-facilitated ammonia excretion by ionocytes of medaka

(Oryzias latipes) acclimated to seawater

Sian-Tai Liu¹, Lin Tsung¹, Jiun-Lin Horng²”, Li-Yih Lin¹*

¹ Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
² Department of Anatomy, Taipei Medical University, Taipei, Taiwan

* These two authors contributed equally to this study.

Correspondence to Dr. L. Y. Lin, Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
Tel: +886-77346316; Fax: +8862-29312904; E-mail: linly@ntnu.edu.tw
Abstract

The proton-facilitated ammonia excretion is critical for a fish's ability to excrete ammonia in freshwater. However, it remains unclear whether that mechanism is also critical for ammonia excretion in seawater (SW). Using a scanning ion-selective electrode technique (SIET) to measure H⁺ gradients, an acidic boundary layer was detected at the yolk-sac surface of SW-acclimated medaka (Oryzias latipes) larvae. The H⁺ gradient detected at the surface of ionocytes was higher than that of keratinocytes in the yolk-sac. Treatment with Tricine buffer or EIPA (a NHE inhibitor) reduced the H⁺ gradient and ammonia excretion of larvae. In situ hybridization and immunochemistry showed that slc9a2 (NHE2) and slc9a3 (NHE3) were expressed in the same SW-type ionocytes. A real-time PCR analysis showed that transfer to SW down-regulated branchial mRNA expressions of slc9a3 and Rhesus glycoproteins (rhcg1, rhcg2, and rhbg) but up-regulated that of slc9a2. However, slc9a3, rhcg1, rhcg2, and rhbg expressions were induced by high ammonia in SW. This study suggests that SW-type ionocytes play a role in acid and ammonia excretion, and that the Na⁺/H⁺ exchanger and Rh glycoproteins are involved in the proton-facilitated ammonia excretion mechanism.

Keywords: mitochondrion-rich cell, gill, fish, embryos, skin
Introduction

Ammonia is a nitrogenous product of amino acid metabolism. Ammonia excretion in fish is largely accomplished by their gill epithelium which has a large surface area and a small diffusion distance. Ammonia exists as two distinct chemical species, dissolved ammonia gas (NH₃) and ammonium ions (NH₄⁺). The conventional term, “ammonia”, used in this article refers to both NH₃ and NH₄⁺. In freshwater (FW) fish, it is generally accepted that ammonia excretion occurs by diffusion of non-ionic NH₃ down a favorable gradient across the gill epithelium (7, 11, 35). The excreted NH₃ can be trapped via acid secretion into the unstirred layer of water on gill surfaces. This “acid-trapping” or “proton-facilitated” mechanism maintains a favorable NH₃ gradient across the gill epithelium (35). Although phospholipid membranes are permeable to non-ionic NH₃, the existence of NH₃ channels in cell membranes provides an efficient and regulated pathway. In recent years, Rhesus glycoproteins (Rh proteins) in cell membranes of the gill and skin epithelium were found to facilitate ammonia excretion in fishes (11, 12, 39). The human Rh antigen on blood cells has long been associated with blood typing; however, the role of Rh proteins in ammonia transport of erythrocytes and non-erythrocytes was discovered in the past decade. The human erythroid RhAG and its non-erythroid homologues, RhBG and RhCG, were demonstrated to function as ammonia transporters or channels (31, 32). In teleosts, Nakada et al. (24) cloned four Rh glycoproteins (Rhag, Rhbg, Rhcg1, and Rhcg2) and localized their distributions in gills of pufferfish (Takifugu rubripes). Rhag, Rhbg, and Rhcg2 were localized to lamellar pavement cells, while Rhcg1 was localized to ionocytes (also called mitochondrion-rich cells, MR cells) of gills. In zebrafish, Nakada et al. (23) also identified the four Rh proteins, and localized Rhcg1 to the apical membrane of H⁺-ATPase-rich cells (HRCs), an acid-secreting ionocyte (19).

Using zebrafish and medaka (Oryzias latipes) larvae as models, we investigated the
mechanism of ammonia excretion by skin ionocytes. Shih et al. (29) applied a scanning ion-selective technique (SIET) and gene-knockdown technique to show that HRCs play a critical role in ammonia excretion which is mediated by Rhcg1 and \(H^+ \)-ATPase (which secretes \(H^+ \) to facilitate ammonia excretion) in apical membranes. Recently, Shih et al. (30) further showed that the \(Na^+/H^+ \) exchanger (NHE3b, \textit{slc9a3b}) in the apical membrane of HRCs also contributes to proton-facilitated ammonia excretion particularly when ambient \(Na^+ \) levels are low. In medaka larvae, Wu et al. (40) found that the coupling of NHE3 and Rhcg1 in apical membranes of ionocytes was involved in ammonia excretion and \(Na^+ \) uptake.

Although the mechanism of ammonia excretion has not been intensively examined in SW fish, it has long been thought that the mechanism in SW fish differs from that in FW fish. Early studies suggested that ionic \(NH_4^+ \) might be excreted via a paracellular pathway in the gill epithelium of SW fish, since the junction of their gill epithelium is leaky in terms of \(Na^+ \) secretion (35). Moreover, proton-facilitated ammonia excretion was questioned in SW fish (34). Since the buffering capability of SW is much higher than that of FW, acid secretion from gills of SW fish might not form an effective acid layer for ammonia trapping. In recent studies, however, expression of Rhcg mRNA in gills and skin was induced by high-ammonia exposure in the mangrove killifish in brackish SW (10). Gill Rhcg1, \(H^+ \)-ATPase, and NHE3 mRNAs of pufferfish exposed to high-ammonia (HA-) SW were also elevated (25). Those studies suggested that ammonia excretion in SW fish is also mediated by SW-type ionocytes by a mechanism similar to that of FW fish. However, convincing evidence is still lacking to demonstrate the proton-facilitated ammonia excretion in SW fish.

In this study, we investigated the mechanism of ammonia excretion in SW using the euryhaline medaka as a model. We applied the SIET to measure \(H^+ \) gradients at
the skin and ionocyte surfaces of larvae and tested if the acidic boundary layer forms in SW and if ammonia excretion is associated with acid secretion. We also examined expressions of Rh (rhcg1, rhcg2, and rhbg) and NHE (slc9a2 and slc9a3) transcripts in gills of medaka subjected to SW and high external ammonia (HEA) challenges to see if they support the mechanism of ammonia excretion in SW.

Material and methods

Experimental animals

Mature Japanese medaka (O. latipes) was reared in circulating tap water at 27-28 °C with a photoperiod of 14 h of light/10 h of dark. The female spawned every day, and fertilized egg clusters were collected from the belly of a female and rinsed with tap water to remove the sludge and separate the clusters into single eggs. Medaka embryos usually hatched at 7-8 days post-fertilization (dpf), and newly hatched larvae were used for the experiments. During the experiments, larvae were not fed, and the media were changed daily to maintain water quality. The experimental protocols were approved (no. 95013) by the National Taiwan Normal University Animal Care and Utilization Committee.

Acclimation experiments

Solutions for acclimation were prepared by adding salts (Sigma-Aldrich, St. Louis, MO) to redistilled water. Normal fresh water (NW) contained (in mM) 0.5 NaCl, 0.2 CaSO4, 0.2 MgSO4, 0.16 KH2PO4, and 0.16 K2HPO4 (pH 8.0, adjusted with NaOH and HCl). SW was prepared by adding proper amounts of sea salt (Instant Ocean, Aquarium System, Mentor, OH). High-ammonia SW (HA-SW) was prepared by adding 1.25 mM \((\text{NH}_4\text{H}_2\text{SO}_4)\) or 2.5 mM \((\text{NH}_4\text{H}_2\text{SO}_4)\) to SW (pH 8.0, adjusted with NaOH and HCl). For SW or HA-SW acclimation, fertilized eggs were transferred to 20‰ SW for the first 2 days and then transferred to 30‰ SW or HA-SW for 5-6 days.
For the SW or HA-SW acclimation of adult medaka, fish were transferred to 20‰ SW for 2 days and then transferred to 30‰ SW or HA-SW for 2 weeks. For freshwater (FW) acclimation, fish was transferred to NW for 2 weeks. The mortality was usually very low during the acclimation periods.

Measurement of the NH$_4^+$ excretion rate

Twenty newly hatched larvae were collected as a sample to measure the NH$_4^+$ excretion rate. Larvae were incubated in 1 ml medium for 1 h at 27-28 °C for NH$_4^+$ excretion, and then water samples were analyzed with an enzyme-based ammonia assay kit (AA0100, Sigma-Aldrich, St. Louis, MO). The enzyme reacts with only NH$_4^+$ but not NH$_3$. Ideal (linear) FW and SW standard curves were successfully established indicating that the kit can be used to quantify NH$_4^+$ in FW and SW. For the assay, 1 ml of working reagent was transferred to a cuvette, 100 μl of water sample was added, and the reaction was recorded following the instruction manual.

Excretion rates (μmol g$^{-1}$ h$^{-1}$) of larvae were calculated as the difference in concentration in μmol l$^{-1}$ multiplied by the volume of the chamber, divided by the mass of fish and time period.

Scanning ion-selective electrode technique (SIET) and measurement of ionic gradients

The SIET was used to measure H$^+$ and NH$_4^+$ activities at the skin and ionocyte surface of larvae. Glass capillary tubes (no. TW 150-4, World Precision Instruments, Sarasota, FL, USA) were pulled on a Sutter P-97 Flaming Brown pipette puller (Sutter Instruments, San Rafael, CA, USA) into micropipettes with tip diameters of 3-4 μm. These were then baked at 120 °C overnight and coated with dimethyl chlorosilane (Sigma-Aldrich) for 30 min. The micropipettes were backfilled with a 1-cm column of electrolytes and frontloaded with a 20-30 μm column of liquid.
ion-exchange cocktail (Sigma-Aldrich) to create an ion-selective microelectrode (probe). The following ionophore cocktails (and electrolytes) were used: NH$_4^+$ ionophore I cocktail B (100 mM NH$_4$Cl) and H$^+$ ionophore I cocktail B (40 mM KH$_2$PO$_4$ and 15 mM K$_2$HPO$_4$; pH 7). The details of the system were described in previous reports (29, 40). To calibrate the ion-selective probe, the Nernstian property of each microelectrode was measured by placing the microelectrode in a series of standard solutions (0.1, 1, and 10 mM NH$_4$Cl for the NH$_4^+$ probe and pH 6, 7, and 8 for the H$^+$ probe; artificial SW standard solutions of different pH values were used for probing the SW medium). By plotting the voltage output of the probe against log[NH$_4^+$] and log[H$^+$] values, a linear regression yielded a Nernstian slope of 58.5 ± 0.4 ($n=10$) for NH$_4^+$ and 58.6 ± 0.8 ($n=10$) for H$. The H$^+$ probe could specifically sense H$^+$ in both FW and SW. However, the NH$_4^+$ probe could not specifically sense NH$_4^+$ in SW, the NH$_4^+$ gradient of specific cells was only measured in FW (NW recording medium).

The SIET was performed at room temperature (26-28 °C) in a small plastic recording chamber filled with 2 ml of recording medium. The recording medium for FW fish contained 0.5 mM NaCl, 0.2 mM CaSO$_4$, 0.2 mM MgSO$_4$, 300 μM Tricine buffer, and 0.3 mg l$^{-1}$ ms222 (tricaine, Sigma-Aldrich). The recording medium for SW contained 350.9 mM NaCl, 45.7 mM MgCl$_2$·6H$_2$O, 24.2 mM Na$_2$SO$_4$, 8.9 mM CaCl$_2$·2H$_2$O, 7.8 mM KCl, 2 mM NaHCO$_3$, and 0.3 mg l$^{-1}$ ms222. pH values of both the FW and SW recording media were adjusted to 8.0 with HCl and NaOH. Before the measurement, an anesthetized larva was positioned in the center of the chamber with its lateral side contacting the base of the chamber. To measure the H$^+$ activity and pH at the surface of the larva, the H$^+$-selective probe was moved to the target positions (~10 μm away from the skin surface), voltages were recorded for 1 min, and
the median value was used to calculate the H⁺ activity and pH. After recording at the
skin surface, the probe was moved away from the skin (~10 mm) to record and
calculate the background (BG) H⁺ activity and pH. In this study, Δ[H⁺] was used to
represent the H⁺ gradient between the target position and background. The gradient
reflects the integrated H⁺ activity of skin cells (including keratinocytes and ionocytes)
near the target position.

Measurement of H⁺ and NH₄⁺ gradients at specific cells

To record the surface H⁺ (Δ[H⁺]) and NH₄⁺ gradients (Δ[NH₄⁺]) at specific cells,
the probe was moved to a position 1-2 μm above the apical membrane of cells. The
temperature difference in microvolts was measured by probing orthogonally to the surface
at 10-μm intervals. Five replicates of recordings at an ionocyte or keratinocyte were
performed, and the median value was used for calculating the Δ[H⁺] of the cell.
Voltage differences obtained were converted into ionic gradients by ASET software
following previous reports (29, 40). The Δ[H⁺] and Δ[NH₄⁺] of cells reflect the ionic
activity and apparent flux occurred at the apical membrane of specific cells.

Addition of EIPA and Tricine buffer

NHE inhibitor 5-(N-ethyl-N-isopropyl) amiloride, EIPA) and Tricine buffer were
obtained from Sigma-Aldrich. Stock solutions of EIPA were prepared by dissolving it
into dimethyl sulfoxide (DMSO, Sigma-Aldrich). The final concentration of DMSO
in the working solutions (including the control group) was 0.1%. Before SIET
recording, 10 larvae were incubated in 1 ml of SW medium with EIPA or Tricine for 1
h. After incubation, the larvae were transferred to the SW recording medium that did
not contain EIPA. The inhibitor was not added to the recording medium to prevent
alteration of the selectivity of the microelectrodes. To analyze the ammonia excretion
rate, larvae were incubated in SW medium that contained EIPA or Tricine buffer for 1 h. The pH of the media was adjusted to 8.0.

Preparation of RNA

To obtain a sufficient quantity of RNA, adult medaka gills isolated from six individuals were pooled as one sample. Samples were homogenized in 0.5 ml Trizol Reagent (Invitrogen, Carlsbad, CA, USA), and DNA contamination was removed with Dnase I (Promega, Madison, WI, USA). Total RNA was purified by a MasterPure™ RNA Purification Kit (Epicentre Biotechnologies, Madison, WI, USA). The amount of total RNA was determined using a NanoDrop 1000 spectrophotometer (Thermo Scientific, Wilmington, DE, USA). All RNA pellets were stored at -20 °C.

Quantitative real-time polymerase chain reaction (qRT-PCR) analysis

For complementary (c)DNA synthesis, 5 μg of total RNA was reverse-transcribed in a final volume of 20 μl containing 0.5 mM dNTPs, 2.5 μM oligo(dT)20, 250 ng of random primers, 5 mM dithiothreitol, 40 units of an RNase inhibitor, and 200 units of SuperScript III RT (Invitrogen, Carlsbad, CA, USA) for 1 h at 50 °C, followed by incubation at 70 °C for 15 min. The mRNA expression of the target gene was measured by a qRT-PCR with the Roche LightCycler 480 System (Roche Applied Science, Mannheim, Germany). Specific primers for all genes were designed (Table 1) using Primer Premier software (version 5.0; PREMIER Biosoft International, Palo Alto, CA, USA). PCRs contained 3.2 ng of cDNA, 50 nM of each primer, and LightCycler® 480 SYBR Green I Master (Roche, Mannheim, Germany) in a final volume of 10 μl. All qRT-PCR were performed as follows: 1 cycle of 50 °C for 2 min and 95 °C for 10 min, followed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min (the standard annealing temperature of all primers). PCR products were subjected to a melting-curve analysis, and representative samples were electrophoresed to verify that only a single product was present. Control reactions were conducted with sterile water.
to determine levels of background and genomic DNA contamination. The standard
curve of each gene was confirmed to be in a linear range with ribosomal protein L7
(rpl7) as an internal control. The expression level of rpl7 was not different among FW,
SW and HA-SW groups (data not shown).

RNA probe synthesis

A fragment of slc9a2 (Ensemble ID: ENSORLG00000012399) was obtained by
PCR and inserted into the pGEM-T Easy vector. Specific primers are shown in Table
2. The inserted fragments were amplified with the T7 and SP6 primers by a PCR, and
the products were respectively used as templates for in vitro transcription with T7 and
SP6 RNA polymerase (Roche, Penzberg, Germany). Digoxigenin (DIG)-labeled RNA
probes were examined using RNA gels and a dot blot assay to confirm their quality
and concentrations.

In situ hybridization and immunohistochemistry (IHC)

Medaka larvae were anesthetized on ice and then fixed with 4% paraformaldehyde
in a phosphate-buffered saline (PBS) solution at 4 °C overnight. Afterwards, samples
were washed with diethylpyrocarbonate (DEPC)-PBST (PBS with 0.1% Tween-20)
several times (for 10 min each). After a brief rinse with PBST, embryos were refixed
with 4% paraformaldehyde for another 20 min. After PBST washing, samples were
incubated with hybridization buffer (HyB: 50% formamide, 5× saline-sodium citrate
(SSC), and 0.1% Tween 20) at 65 °C for 5 min and with HyB containing 500 μg/ml
yeast tRNA at 65 °C for 4 h before hybridization. After overnight hybridization with
100 ng/ml DIG-labeled antisense or sense RNA probes, embryos were serially washed
with 50% formamide-2× SSC (at 65 °C for 20 min), 2× SSC (at 65 °C for 10 min),
0.2× SSC (at 65 °C for 30 min, twice), and PBST at room temperature for 10 min.
Afterwards, embryos were reacted with an alkaline phosphatase-coupled anti-DIG
antibody (diluted 1:8000) and then treated with nitro blue tetrazolium and 5-bromo-4-chloro-3-indolyl phosphate for the alkaline phosphatase reaction.

For double staining, *in situ*-hybridized samples were subjected to IHC. After PBS washing, samples were incubated with 3% bovine serum albumin (BSA) and 5% normal goat serum for 30 min to block nonspecific binding. Some samples were then incubated overnight at 4 °C with an α5-monoclonal antibody against the α-subunit of the avian Na⁺-K⁺-ATPase (diluted 1:2000) (Developmental Studies Hybridoma Bank, University of Iowa, Ames, IA, USA). Others were incubated with a specific SLC9A3 (NHE3) polyclonal antibody against the C-terminus (VAPSQRAQTRPPLTAG) of the medaka NHE3 protein (diluted 1:1000) (16). After PBS washing for 20 min, samples were further incubated in goat anti-rabbit immunoglobulin G (IgG) conjugated with FITC or goat anti-mouse IgG conjugated with Texas red (Jackson Immunoresearch Laboratories, West Grove, PA, USA) for 2 h at room temperature. Finally, samples were washed with PBST and stored in PBS at 4 °C in a dark box for further examination and analysis. Images were acquired with a Leica TCS-SP5 confocal laser-scanning microscope (Leica Lasertechnik, Heidelberg, Germany).

Statistical analysis

Data are expressed as the mean ± SE (*n*, number of larvae or ionocytes). Values from each condition were analyzed using one-way analysis of variance (ANOVA) followed by Tukey’s pairwise comparisons. Student’s unpaired *t*-test (two-tailed) was used for simple comparisons of two means. Significance was set at α level of 0.05.
Results

H⁺ gradients at the skin surface of larvae acclimated to SW

The surface pH and Δ[H⁺] (H⁺ gradient) of SW-acclimated larvae were measured with the SIET. Six spots at the surface of larvae and a background (~10 mm away from the larva) were measured, including the snout, pericardial cavity, yolk-sac, cloaca, trunk, and tail (Fig. 1A). Δ[H⁺] of the 6 spots were determined by calculating the difference between the target spot and background (Fig. 1B). Figure 1C shows pH values of the 6 spots and background. pH levels of the pericardial cavity and yolk-sac were significantly lower (~0.12 pH) than that of the background, indicating that acid was being secreted in these areas. Since the Δ[H⁺] was consistently highest at yolk-sac (Fig 1B), yolk-sac was selected for H⁺ measurement in the following experiments.

H⁺ gradients at the yolk-sac and ionocyte surfaces of larvae acclimated to FW, SW, and HA-SW

Δ[H⁺] at the yolk-sac of larvae acclimated to FW, SW, and HA-SW (SW with 2.5 or 5 mM NH₄⁺) for 5 days were measured (Fig. 2A; the arrow shows the location of the probe). pH values of the four media were adjusted to the same level (pH 8.0). Δ[H⁺] of the SW group was significantly higher than that of the FW group (Fig. 2B). Values of both the 2.5 and 5 mM HA-SW groups were remarkably lower than that of the SW group, and the 5 mM HA-SW group had a negative value (Fig. 2B).

Similar results were found when measuring Δ[H⁺] at the surface of specific skin cells (ionocytes and keratinocytes). Δ[H⁺] of cells were measured by probing the H⁺ gradient at 10-μm intervals perpendicular to the cell surface. In the SW group, Δ[H⁺] of ionocytes was about 3-fold higher that of keratinocytes (Fig. 2C). HA-SW (5 mM NH₄⁺) acclimation significantly decreased Δ[H⁺] of both ionocytes and keratinocytes, and Δ[H⁺] of keratinocytes decreased until becoming negative (Fig. 2C). Taken
together, the decrease of $\Delta[H^+]$ in the HA-SW group suggests that non-ionic NH$_3$ was excreted and alkalinized the skin surface.

NH$_4^+$ gradients at ionocytes in larvae acclimated to SW and HA-SW

Using the SIET to measure NH$_4^+$ in SW was not successful because the high-salt condition severely interfered with the selectivity of the NH$_4^+$-sensitive microelectrode. Therefore, SIET recordings of the NH$_4^+$ gradient at the cell surface of SW and HA-SW larvae were conducted in FW medium (NW). Results showed that $\Delta[NH_4^+]$ at the surface of ionocytes was approximately 2.8- and 2.2-fold higher than those of keratinocytes of larvae reared in SW and HA-SW, respectively (Fig. 3A). HA-SW acclimation remarkably increased $\Delta[NH_4^+]$ of both ionocytes and keratinocytes (Fig. 3A).

In addition, NH$_4^+$ excretion rates of FW- and SW-acclimated whole larva were analyzed with an enzyme-based ammonia assay and compared. No significant difference was found between the FW and SW groups (Fig. 3B). HA-SW acclimation remarkably increased NH$_4^+$ excretion rate (Fig. 3B).

Effects of Tricine buffer on the H$^+$ gradient at the yolk-sac surface and whole-larva NH$_4^+$ excretion

To test if ammonia excretion is facilitated by acid secretion by larval skin, a high concentration of Tricine buffer was added to SW to neutralize acidification of the skin surface. Results showed that the addition of Tricine (1 and 5 mM) effectively eliminated the H$^+$ gradient at the yolk-sac surface of SW larvae (Fig. 4A). In addition, the NH$_4^+$ excretion rate of whole larva was respectively suppressed by 35% and 42% with 1 and 5 mM Tricine buffer (Fig. 4B).

Effects of EIPA on the H$^+$ gradient at the yolk-sac surface and whole-larva ammonia excretion
To examine if the NHE is involved in acid secretion and ammonia excretion in SW larvae, a specific inhibitor (EIPA) was applied to block the NHE (Fig. 5A).

Results showed that respective $\Delta[H^+]$ at the yolk-sac surface decreased 19%, 35%, and 49% after exposure to 50, 100, and 200 μM EIPA for 1 h. NH$_4^+$ excretion rates of larvae respectively decreased 24% and 34% with 50 and 100 μM EIPA (Fig. 5B).

Localization of slc9a2 and slc9a3 in the yolk-sac skin of SW-acclimated larvae

IHC and in situ hybridization were used to localize the slc9a3 protein (Fig. 6 C) and slc9a2 transcript (Fig. 6A) in larval skin. NKA immunohistochemical staining was used to label ionocytes (Fig. 6B). Images showed that the slc9a2 transcript was colocalized with NKA signals (Fig. 6D, E), and the slc9a3 protein was localized in apical membranes of NKA cells (Fig. 6D, E). These data demonstrated localization of slc9a2 and slc9a3 in the same ionocytes of SW medaka larvae.

Expression levels of rhbg, rhcg1, rhcg2, slc9a2, and slc9a3 transcripts in gills of medaka acclimated to FW, SW, and HA-SW

A real-time qPCR was used to examine transcript levels of rhbg, rhcg1, rhcg2, slc9a2 (NHE2), and slc9a3 (NHE3) in gills of adult medaka acclimated to FW, SW and HA-SW for 2 weeks. Results showed that levels of rhbg, rhcg1, rhcg2, and slc9a3 were significantly lower in the SW than FW group (Fig. 7A-C, E). In contrast, the level of slc9a2 was significantly higher in the SW than FW group (Fig. 7D).

Comparing the SW and HA-SW groups, levels of rhcg1, rhcg2, and slc9a3 respectively increased 2.2-, 2.8-, and 2-fold after 2 weeks of HA-SW exposure (Fig. 7B, C, E). In contrast, slc9a2 decreased about 34% after HA-SW exposure (Fig. 7D).
Discussion

The non-invasive SIET was previously applied to reveal acid (H+) secretion by yolk-sac ionocytes in zebrafish (9, 29) and FW-acclimated medaka (18, 40). Herein, we used the same approach to show that ionocytes secrete H+ to acidify the yolk-sac surface of medaka larva in SW. The H+ gradient at the yolk-sac surface was even larger in SW-acclimated larvae than in FW-acclimated larvae (both SW and FW were adjusted to pH 8; Fig. 2B). Since the buffering capacity of SW is higher than that of FW, it is obvious that a medaka larva secretes more acid in SW than in FW. In SW, the H+ gradient measured at the surface of ionocytes was remarkably higher than that of keratinocytes, reflecting the critical role of ionocytes in acid secretion.

Interestingly, alkalization of the yolk-sac surface (including both ionocyte and keratinocyte surfaces) occurred in larvae acclimated to HA-SW (Fig. 2B, C), suggesting that accumulated ammonia was released onto the cell surface mostly as nonionic NH3 which consumed the accumulated acid. In contrast, if ammonia was released as mostly NH4+, acidification of skin surface would have been detected. A similar phenomenon was also found in zebrafish and medaka larvae in FW (29, 40). When using Tricine buffer to eliminate the acid layer, the NH4+ excretion rate of larvae was significantly suppressed (Fig. 4), also supporting non-ionic NH3 being excreted by SW medaka and the proton-facilitated ammonia excretion.

In this study, we attempted to measure the NH4+ gradient with the SIET but found that the selectivity of the microelectrode for NH4+ was poor in SW medium; therefore, SW-larvae were acutely transferred to FW medium for NH4+ recording. The result (Fig. 3A) showed positive NH4+ gradient at both inocytes and keratinocytes and the gradients were remarkably higher at ionocytes than at keratinocytes, suggesting ammonia excretion by both cell types. However, it should be noted that the FW transfer might influence the mechanism of ammonia excretion and the measured NH4+
gradient may not reflect the true gradient in SW. In addition to the SIET data, a
conventional ammonia assay with an enzyme reaction was also used to determine the
whole-larval NH$_4^+$ excretion rate in SW (Fig. 3B). No significant difference was
found in NH$_4^+$ excretion rates between FW- and SW-acclimated larvae, suggesting
that ammonia excretion in medaka larvae is not affected by salinity. The effect of
salinity on ammonia excretion seems to be inconsistent among fish species. An
increase in salinity did not alter the ammonia excretion rate in toadfish
(Allenbatrachus grunniens) (2, 33) but decreased it in gulf sturgeon (Acipenser
oxyrinchus desotoi) and striped bass (Morone saxatilis) (1). Whereas, an increase in
salinity was found to stimulate ammonia excretion in Atlantic salmon (Salmo salar)
(17) and mangrove killifish (Rivulus marmoratus) (8), in a recent study on rainbow
tROUT, the net ammonia efflux rate was higher in SW- than in FW-acclimated
individuals (37).

In zebrafish larvae, both H$^+$-ATPase and the Na$^+$/H$^+$ exchanger (NHE3) in apical
membranes contribute to H$^+$ secretion by yolk-sac ionocytes (HR cells) (11). However,
in the case of medaka acclimated to FW, only NHE3 was found in apical membranes
of ionocytes (40); H$^+$-ATPase was found in basolateral membranes of a minor
population of ionocytes but did not contribute to H$^+$ secretion (18). In SW-acclimated
medaka, H$^+$-ATPase was not detected in ionocytes by IHC (data not shown). In
addition, EIPA treatment significantly suppressed the H$^+$ gradient, demonstrating the
role of NHE in secreting acid into SW (Fig. 5A). Since the high Na$^+$ concentration of
SW favors the driving of NHE in apical membranes of ionocytes, this could be the
reason why acid secretion was greater in SW than FW (Fig. 2B). It is generally
accepted that SW fish excrete metabolic acid via the NHE but not H$^+$-ATPase in
apical membranes of ionocytes (3, 5, 11). In several studies, the molecular identity
and cellular localization of NHE isoforms in marine and euryhaline fishes were
reported. In the stingray (*Dasyatis sabina*) and dogfish (*Squalus acanthias*), NHE3 or
NHE2 was identified in apical membranes of gill ionocytes (3, 6). Using heterologous
antibodies (against mammalian NHE2), Edwards and colleagues (6) demonstrated the
colocalization of NHE2 and NKA in gills of several elasmobranch species. In a
marine teleost, *Myxoecephalus octodecemspinosus*, NHE2 was also found in apical
membranes of gill ionocytes (3). However, those studies did not report if the two
NHE isoforms (NHE2 and NHE3) were expressed by the same ionocytes. In this
study, we used *in situ* hybridization and IHC to show for the first time that both
NHE2 (mRNA) and NHE3 (protein) are expressed by the same SW ionocytes (Fig. 6).
Similar distributions of NHE2 and NHE3 were found in FW ionocytes (PNA + cells)
of rainbow trout (15).

Although both NHE2 and NHE3 were expressed by the same ionocytes, their
regulations differed. The mRNA expression of NHE3 was down-regulated, but that of
NHE2 was up-regulated in gills of medaka subjected to SW acclimation (Fig. 7). The
mRNA level of NHE2 was roughly equivalent to that of NHE3 in SW, indicating that
both NHE2 and NHE3 are required in SW. Interestingly, reverse regulation of NHE2
and NHE3 was revealed in SW medaka exposed to HA water (Fig. 8). NHE3 was
up-regulated by HA exposure, whereas NHE2 was down-regulated. Similar results
were reported in puffer fish exposed to HA (25). The up-regulation of NHE3 suggests
that NHE3 is associated with ammonia excretion in SW. Meanwhile, the
down-regulation of NHE2 might maintain a balance between the two isoforms in acid
secretion. On the other hand, the two isoforms might perform different kinetics and
properties for specific kind of roles. In mammalian kidneys, the major distributions of
NHE2 and NHE3 are respectively in Henle’s loop and the proximal convoluted tubule
(4, 27). Kinetic studies showed that the affinities to H+ and Na+ were higher in NHE3
than in NHE2 (26, 41), suggesting that NHE2 is more suitable for working in high
extracellular Na\(^+\) environment (renal medulla). For a better understanding role of the
two NHE isoforms in ionocytes, it is necessary to examine their kinetics in the future.
NHE has long been speculated to function as a Na\(^+\)/NH\(_4\)^+ exchanger based on the
observation that ammonia excretion can be suppressed by NHE inhibitors (28, 36, 38).
We cannot rule out this possibility until a functional characterization of fish NHE is
achieved. However, if this speculation is true for FW or SW fish, proton-facilitated
ammonia excretion by ionocytes would be unlikely, and it would conflict with the
coupling model of NHE3 and Rhcg1 in medaka (40) because NH\(_4\)^+ excretion via
NHE3 does not favor the driving of NH\(_3\) diffusion via Rhcg1 and would even cause
back-flux via Rhcg1.

Localization of Rhcg1 and Rhbg mRNA with in situ hybridization showed that
they are colocalized in the same ionocytes of FW-acclimated medaka larvae (40).
However, their localizations in SW ionocytes were not successful in this study,
probably due to their low expression level in SW ionocytes. Real-time PCR data
showed that expressions of these Rh genes (Rhbg, Rhcg1, and Rhcg2) were
down-regulated in SW but up-regulated in HA (Fig. 7), suggesting that Rh
glycoproteins are still required for excreting ammonia into SW. Since the NH\(_4\)^+
excretion rate did not differ between FW- and SW-acclimated larvae (Fig. 3B),
down-regulation of Rh glycoproteins in SW might reflect another ammonia excretion
pathway being induced and/or the efficiency of Rh protein-mediated ammonia
excretion being enhanced. Since the high Na\(^+\) concentration of SW favors the driving
of NHE, elevated H\(^+\) secretion probably promotes NH\(_3\) diffusion via Rh proteins. In
contrast to the tight nature of the gill epithelium in FW fish, junctions between
ionocytes and accessory cells of SW fish are relatively leaky (16, 21). Therefore,
NH\(_4\)^+ (NH\(_3\)) excretion via a paracellular pathway might be another pathway in SW
fish.
In our previous studies, coupling of NHE3 and Rhcg1 was suggested to mediate Na\(^+\) uptake, and acid and ammonia excretion by ionocytes of medaka in FW (18, 40). Low-Na\(^+\) water (40), acidic water (18), and HA water (unpublished data) were found to up-regulate both NHE3 and Rhcg1. In this study, NHE3 and Rhcg1 were both down-regulated in SW and up-regulated in HA, suggesting that the roles of NHE3 and Rhcg1 in SW medaka are similar to those in FW medaka. As proposed in FW medaka (18, 40), NHE3 transports H\(^+\) out of ionocytes, and the accumulated surface H\(^+\) further traps the NH\(_3\) that diffuses across Rhcg1. In addition to NHE3, NHE2 might also contribute to H\(^+\) secretion in SW ionocytes, but it might not physically join with Rhcg1 in apical membranes. Further investigation of this speculation is required.

In addition to NHE and Rh glycoproteins, other transporters and enzymes were suggested to transport ammonia. In the euryhaline climbing perch (*Anabas testudineus*), gill mRNA levels of Na\(^+\)-K\(^+\)-ATPase (NKA), Na\(^+\)-K\(^+\)-2Cl\(^-\) cotransporter (NKCC1), and CFTR Cl\(^-\) channel were induced by high ammonia exposure, suggesting that they are involved in ammonia excretion by SW-type ionocytes (13, 14, 20). In a recent study, NKA and NKCC1 were co-localized to the basolateral membrane of SW-ionocyte in medaka larvae (22). Taken all evidence together, a putative model of ammonia excretion by SW- and FW-ionocytes of medaka is proposed (Fig. 8).

In conclusion, this study provides molecular and physiological evidence to show that ionocytes play a role in acid and ammonia excretion of SW medaka. Ammonia excretion in SW medaka is facilitated by proton secretion of ionocytes in which NHE and Rh glycoproteins are involved.

Acknowledgement

This work was supported by a National Science Council of Taiwan Research grants to L. Y. Lin and J. L. Horng.
References

12. Ip YK, and Chew SF. Ammonia production, excretion, toxicity, and defense in

36. Wilson RW, Wright PM, Munger S, and Wood CM. Ammonia excretion in freshwater rainbow trout (*Oncorhynchus mykiss*) and the importance of gill

Figure legends

Fig. 1. (A) The SIET was applied to measure $\rm H^+$ activity at the skin surface of seawater (SW)-acclimated medaka larvae. Six spots and a background (BG) were measured: the snout (1), pericardial cavity (2), yolk-sac (3), cloaca (4), trunk (5), tail (6) and 10 mm from the surface (BG). (B) $\Delta[H^+]$ measured at 6 spots of 4 individuals. (C) pH values measured at the 6 spots and BG ($n = 12$ individuals). a, b, c Different letters indicate a significant difference (one-way ANOVA, Tukey's comparison, $p < 0.05$).

Fig. 2. $\Delta[H^+]$ at the yolk sac surface of larvae acclimated to fresh water (FW), seawater (SW), and high ammonia seawater (2.5 mM and 5 mM, HA-SW) (B). Data are presented as the mean ± SE ($n = 12$ individuals). (A) The arrow indicates the location of the microelectrode. (C) $\Delta[H^+]$ at the surface of ionocytes (IC) and keratinocytes (KC) in larvae acclimated to SW and 5 mM HA-SW (the number of cells is shown in parentheses). Different letters indicate a significant difference (one-way ANOVA, Tukey's comparison, $p < 0.05$).

Fig. 3. (A) $\Delta[\text{NH}_4^+]$ at ionocytes (IC) and keratinocytes (KC) in larvae acclimated to seawater (SW) and high-ammonia seawater (5 mM, HA-SW). The larvae were transferred to NW for SIET probing. (B) NH_4^+ excretion rates of medaka larvae acclimated to FW (pH 8.0) and SW (pH 8.0) and 5 mM HA-SW (pH 8.0). Data are presented as the mean ± SE. The number of cells is shown in parentheses. a, b, c Different letters indicate a significant difference (one-way ANOVA, Tukey's comparison, $p < 0.05$). * Indicates a significant difference (Student’s t-test, $p < 0.05$).

Fig. 4. (A) Effects of Tricine (1 and 5 mM) on $\Delta[H^+]$ at the yolk-sac surface and ammonia excretion rates (B) of larvae acclimated to seawater. Data are presented as the mean ± SE ($n = 15$ individuals for $\Delta[H^+]$; $n = 4$ for the ammonia excretion rate). a, b, c Different letters indicate a significant difference (one-way ANOVA, Tukey’s
Fig. 5. Effects of EIPA on $\Delta[H^+]$ at the yolk sac surface (A) and ammonia excretion rates (B) of larvae acclimated to seawater ($n = 9$ individuals for $\Delta[H^+]$; $n = 5$ for the ammonia excretion rate). Data are presented as the mean ± SE. a, b, c Different letters indicate a significant difference (one-way ANOVA, Tukey’s comparison, $p < 0.05$).

Fig. 6. Localization of slc9a2 (NHE2) and slc9a3 (NHE3) in yolk-sac ionocytes of seawater-acclimated larvae. (A) slc9a2 in situ hybridization. (B) NKA immunohistochemistry. (C) slc9a3 immunohistochemistry. (D, E) Merged images of (A-C). Arrows indicate ionocytes. Scale bars in A-D are 10 μm. Scale bar in E is 100 μm.

Fig. 7. mRNA expressions of rhbg (A), rhcg1 (B), rhcg2 (C), slc9a2 (D), and slc9a3 (E) in gills of medaka acclimated to fresh water (FW) and seawater (SW), and high-ammonia seawater (HA-SW) for 2 weeks. Data are presented as the mean ± SE ($n = 5$). a, b, c Different letters indicate a significant difference (one-way ANOVA, Tukey’s comparison, $p < 0.05$).

Fig. 8. A putative model of ammonia excretion by freshwater-type ionocytes (FW-IC) and seawater-type ionocytes (SW-IC) of madaka. The $Na^+\cdotH^+$ exchanger (NHE3) and Rhcg1 mediate the proton-facilitated ammonia excretion in the apical membrane of FW-IC; in the basolateral membrane, Rhbg and $Na^+\cdotK^+\cdotATPase$ (NKA) carry NH_4^+ into ionocytes (A)(39). In the apical membrane of SW-IC, both NHE2 and NHE3 secrete H^+ to trap the NH_3 moved through Rhcg1 and a paracellular pathway; in the basolateral membrane, $Na^+\cdotK^+\cdotATPase$ (NKA), $Na^+\cdotK^+\cdot2Cl^-$ cotransporter (NKCC1), and Rhbg carry NH_4^+ into ionocytes. In addition, NH_4^+ also diffuses out of fish through leaky junctions (the paracellular pathway) between SW-IC and adjacent accessory cells (AC).
Table 1. Specific-Primer sets for the Real-time qualitative PCR analysis.

<table>
<thead>
<tr>
<th>Name</th>
<th>Primer Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>slc9a2</td>
<td>5’ ATCGTCTGTTGTGCCCTC 3’</td>
</tr>
<tr>
<td>Forward</td>
<td>5’ ATCGTCTGTTGTGCCCTC 3’</td>
</tr>
<tr>
<td>Reverse</td>
<td>5’ ATCGTCTGTTGTGCCCTC 3’</td>
</tr>
<tr>
<td>slc9a3</td>
<td>5’ ATGCCTGATGTCACTGCT 3’</td>
</tr>
<tr>
<td>Forward</td>
<td>5’ ATGCCTGATGTCACTGCT 3’</td>
</tr>
<tr>
<td>Reverse</td>
<td>5’ ATGCCTGATGTCACTGCT 3’</td>
</tr>
<tr>
<td>rhbg</td>
<td>5’ CGCTGTGACCTCTGGGCACTGCT 3’</td>
</tr>
<tr>
<td>Forward</td>
<td>5’ CGCTGTGACCTCTGGGCACTGCT 3’</td>
</tr>
<tr>
<td>Reverse</td>
<td>5’ CGCTGTGACCTCTGGGCACTGCT 3’</td>
</tr>
<tr>
<td>rhcg1</td>
<td>5’ TGGGAGATGATGGGAAGATAAGC 3’</td>
</tr>
<tr>
<td>Forward</td>
<td>5’ TGGGAGATGATGGGAAGATAAGC 3’</td>
</tr>
<tr>
<td>Reverse</td>
<td>5’ TGGGAGATGATGGGAAGATAAGC 3’</td>
</tr>
<tr>
<td>rhcg2</td>
<td>5’ CCTGCCGCTCTGTCTCGCTCTCGCTCCTCTCTC 3’</td>
</tr>
<tr>
<td>rpl7</td>
<td>5’ GAGATCCGCCTGCTGCTCTGCTGCTCTGCTCCTCCTCTC 3’</td>
</tr>
<tr>
<td>Forward</td>
<td>5’ GAGATCCGCCTGCTGCTGCTCTGCTCCTCCTCCTC 3’</td>
</tr>
<tr>
<td>Reverse</td>
<td>5’ GAGATCCGCCTGCTGCTGCTCCTCCTCCTCCTCCTC 3’</td>
</tr>
</tbody>
</table>

Table 2. Specific-Primer sets for the in situ hybridization probe.

<table>
<thead>
<tr>
<th>Name</th>
<th>Primer Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>slc9a2</td>
<td>5’ ACAATGGGCTGGCATAGGAGATT 3’</td>
</tr>
<tr>
<td>Forward</td>
<td>5’ ACAATGGGCTGGCATAGGAGATT 3’</td>
</tr>
<tr>
<td>Reverse</td>
<td>5’ ACAATGGGCTGGCATAGGAGATT 3’</td>
</tr>
</tbody>
</table>
Fig. 1
Fig. 2
Fig. 3

A

Cellular Δ[NH$_4^+$] (μM)

IC
KC

SW SW HA-SW HA-SW

NH$_4^+$ excretion rate (μmol g$^{-1}$ h$^{-1}$)

FW SW HA-SW
Fig. 4
Fig. 5
Fig. 6
Fig. 7