Title: δ Opioid receptor activation stimulates normal diet intake but conversely suppresses high-fat diet intake in mice

Kentaro Kaneko¹, Takafumi Mizushige¹,², Yuri Miyazaki¹, Michael Lazarus³,⁴, Yoshihiro Urade³,⁴, Masaaki Yoshikawa¹, Ryuhei Kanamoto¹, Kousaku Ohinata¹

¹Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan; ²Research Unit for Physiological Chemistry, C-PIER, Kyoto University, Kyoto 606-8501, Japan; ³Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Suita, Osaka 565-0874, Japan; ⁴International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan

Address correspondence to: Kousaku Ohinata PhD, Associate Professor, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan

Tel.: +81-774-38-3733

Fax: +81-774-38-3774

E-mail: ohinata@kais.kyoto-u.ac.jp

Copyright © 2014 by the American Physiological Society.
Abbreviation list:

[d-Pen²⁵]-enkephalin, DPDPE
cyclooxygenase, COX
prostaglandin D₂, PGD₂
lipocalin-type prostaglandin D synthase, L-PGDS
neuropeptide Y, NPY
melanocortin, MC
α-melanocyte-stimulating hormone, α-MSH
corticotropic-releasing factor, CRF
proopiomelanocortin, POMC
Abstract

The central opioid system is involved in a broadly distributed neural network that regulates food intake. Here, we show that activation of central δ opioid receptor not only stimulated normal diet intake, but conversely suppressed high-fat diet intake as well. D-Pen²,⁵-enkephalin (DPDPE), an agonist selective for the δ receptor, increased normal diet intake after central administration to non-fasted male mice. The orexigenic activity of DPDPE was inhibited by blockade of cyclooxygenase (COX)-2, lipocalin-type prostaglandin D synthase (L-PGDS), D-type prostanoid receptor 1 (DP₁) and neuropeptide Y (NPY) receptor type 1 (Y₁) for PGD₂ and NPY, respectively, suggesting that this was mediated by the PGD₂-NPY system. In contrast, DPDPE decreased high-fat diet intake in mice fed a high-fat diet. DPDPE-induced suppression of high-fat diet intake was blocked by antagonists of melanocortin 4 (MC₄) and corticotropin-releasing factor (CRF) receptors, but not by knockout of the L-PGDS gene. These results suggest that central δ opioid receptor activation suppresses high-fat diet intake via the MC-CRF system, independent of the orexigenic PGD₂ system. Furthermore, orally administered rubiscolin-6, an opioid peptide found in spinach Rubisco, suppressed high-fat diet intake. This suppression was also blocked by centrally administered naltrindole, an antagonist for the δ receptor, suggesting that rubiscolin-6 suppressed high-fat diet intake via activation of central δ opioid receptor.

Key words: δ opioid receptor; food intake; MC₄; CRF; PGD₂
Introduction

A number of endogenous orexigenic and anorexigenic factors and their receptors in the central nervous system (CNS) play a key role in food intake regulation and energy homeostasis [16,31,41,44]. Opioids are a series of substances having morphine-like analgesic activities, and bind to opioid receptors, which are present in the CNS. In general, activation of the opioid system seems to contribute to stimulation of food intake. Indeed, agonists of μ receptor, among major opioid receptors, μ and δ, stimulated normal and high-fat diet intake [1,45]; however, the role of central δ receptor in food intake regulation has not been fully elucidated.

Recently, we found that rubiscolin-6, a δ opioid agonist peptide derived from Rubisco, which is a major protein in green leaves such as spinach, stimulates normal diet intake after oral administration in mice [18,19]. We also reported that this orexigenic activity was mediated by prostaglandin (PG) D₂. PGD₂ is the most abundant PG in the CNS, and has various physiological actions, including sleep induction and hyperthermia [28,30,38,39,43]. We previously reported that PGD₂ stimulates food intake via DP₁ receptor for PGD₂, which was coupled with neuropeptide Y (NPY), the hypothalamic peptide that most potently stimulates food intake [38]. The rubiscolin-6-induced orexigenic activity was mediated by the central PGD₂-NPY system. In our current study, we used an agonist the δ receptor, [D-Pen²⁵]-enkephalin (DPDPE), which is more potent and selective than that of rubiscolin-6, to demonstrate that central activation of δ opioid stimulated normal diet intake via activation of the PGD₂-NPY system in mice.
It was also well-known that the responsiveness of several endogenous peptides regulating food intake affected by nutritional status. For example, enterostatin selectively suppressed fat intake in rats fed with high-fat but not normal diet [10]. We then investigated the effect of central administration of δ agonist on high-fat intake. Intriguingly, in mice fed a high-fat diet, DPDPE suppressed high-fat diet intake, indicating that central δ activation contributed to decrease in high-fat diet intake. Thus, we have found that activation of the δ receptor in the CNS stimulates normal diet intake and conversely decreases high-fat diet intake in mice. We then focused on this novel action induced by central δ activation, and tested whether the anorexigenic activity was associated with the melanocortin (MC) system coupled to corticotropin-releasing factor (CRF), which contributes to decreased food intake, as well as the above-mentioned PGD2 system. We also investigated whether rubiscolin-6 suppressed high-fat intake after oral administration.

2 Materials and methods

2.1 Materials

Rubiscolin-6 was synthesized by the Fmoc strategy [4]. [D-Pen²⁵]enkephalin (DPDPE), an agonist for the δ opioid receptor, and naltrindole, an antagonist for the δ opioid receptor, were obtained from Sigma-Aldrich Co. (St. Louis, MO). BIBO3304 trifluoroacetate, an antagonist for the NPY Y₁ receptor, and HS024, an antagonist for the melanocortin 4 (MC₄) receptor, were obtained from Tocris Cookson Inc. (Ellisville, MO). MK0524 and BWA868C, antagonists of the DP₁ receptor, were obtained from
Cayman Chemical (Ann Arbor, MI). SC-560, a cyclooxygenase (COX)-1 inhibitor, was obtained from Alexis Biochemicals (Plymouth Meeting, PA). Celecoxib, a COX-2 inhibitor, was obtained from Toronto Research Chemicals Inc. (Ontario, Canada). Astressin, an antagonist for the corticotropine-releasing factor (CRF) receptor, was obtained from the American Peptide Company, Inc. (Sunnyvale, CA). Carboxymethyl cellulose (CMC) was obtained from Nacalai Tesque Inc. (Kyoto, Japan).

2.2 Animals and diets

Male ddY or C57BL/6 mice of 7 weeks of age were obtained from Japan SLC (Shizuoka, Japan) and used in these experiments. Lipocallin-type (L-) prostaglandin D synthase (PGDS) knock-out (KO) mice were also used [18,28,30,38,39,43]. Each mouse was individually housed under regulated conditions (23 ± 1°C on a 12 h light-dark cycle with lights on at 7 a.m.) and had free access to water, unless otherwise indicated. After a 1-week acclimation period, we began the food intake experiment. During the acclimatization phase the normal diet intake experiment, mice were allowed ad libitum access to normal pelleted chow. The normal diet consisted of 12.0% fat, 59.1% carbohydrate and 28.9% protein and had an energy density of 3.5 kcal/g (CE-2; CLEA Japan, Inc., Tokyo Japan). During the high-fat diet intake experiment, mice were allowed ad libitum access to the high-fat diet, which consisted of 60.0% fat, 20.0% carbohydrate and 20.0% protein and had an energy density of 5.2 kcal/g (D12492; Research Diets, Inc., New Brunswick, NJ USA).
2.3 Cannula implantation

Central administration was performed as described previously [18,33,34,36-38]. Briefly, mice were anesthetized with sodium pentobarbital (80-85 mg/kg i.p.) and placed in a stereotaxic instrument. A 24-gauge cannula beveled at one end over a distance of 3 mm (Safelet-Cas; Nipro, Osaka, Japan) was implanted 0.9 mm posterior and 0.9 mm to the bregma in the third cerebral ventricle. Animals were tested one week or more after implantation.

2.4 Food intake experiment

The food intake experiment was performed as previously described [17-19,33-38]. The experiment started at 11 a.m. DPDPE at a dose of 0.1–1 nmol/mouse in 4 μl artificial cerebrospinal fluid (ACSF: 138.9 mM NaCl, 3.4 mM KCl, 1.3 mM CaCl₂, 4.0 mM NaHCO₃, 0.6 mM NaH₂PO₄, 5.6 mM glucose, pH 7.4) or control vehicle alone was i.c.v. administered to non-fasted mice. In this study, we used non-fasted male mice, unless otherwise indicated. DPDPE (0.3 nmol/mouse, i.c.v.) and naltrindole (10 nmol/mouse, i.c.v.) or BIBO3304 (5 nmol/mouse, i.c.v.) in 4 μl ACSF were co-administered to ddY mice. A combination of DPDPE (0.3 nmol/mouse, i.c.v.) and MK0524 or BWA868C (1.6 nmol/mouse, i.c.v.) in 4 μl 5% dimethylsulfoxide ACSF was co-administered. A combination of DPDPE (0.3 nmol/mouse, i.c.v.) and SC-560 (8.5 μmol/kg, i.p.) or celecoxib (7.9 μmol/kg, i.p.) in saline containing 0.5% CMC was also co-administered. DPDPE (1 nmol/mouse, i.c.v.) was administered to L- or hematopoietic (H-) PGDS KO or wild-type C57BL/6 mice. The weight of the food
pellets in each cage was measured at 0 min, 20 min and 1, 2 and 4 hours after administration, and the cumulative food intake was calculated.

In the high-fat diet intake experiment, we used 2-week high-fat diet-fed mice. DPDPE (0.3 nmol/mouse, i.c.v.) and HS024 (0.1 nmol/mouse, i.c.v.) [20] or astressin (6 nmol/mouse, i.c.v.) [14] in 4 μl ACSF were co-administered to C57BL/6 mice. Rubiscolin-6 at a dose of 0.13–1.3 μmol/kg in saline was orally administered to mice. Rubiscolin-6 (0.39 μmol/kg, p.o.) in saline was administered just after injection of naltrindole (10 nmol/mouse, i.c.v.) or HS024 (0.1 nmol/mouse, i.c.v.). DPDPE (1 nmol/mouse, i.c.v.) or rubiscolin-6 (0.39 μmol/kg, p.o.) was administered to L-PGDS KO or wild-type C57BL/6 mice fed a high-fat diet. DPDPE was administered repeatedly 1, 3 and 7 days after change the diet from normal to high-fat diet. The other experiments were performed independently, unless otherwise indicated. All experiments were approved by Kyoto University Ethics Committee for Animal Research Use. After food intake experiments, cannula placement was confirmed by dye [18,35]. The third ventricle and the lateral ventricle of mouse brain were colored after i.c.v. administration of dye. All mice were killed by an overdose of anesthesia drugs after the experiment.

2.5 Method of RNA preparation from hypothalamus and quantitative RT-PCR

Each mouse hypothalamus was excised after decapitation under deep anesthesia, and kept in RNA later RNA Stabilization Reagent (QIAGEN Sciences Inc., Germantown, MD) until RNA extraction. Total RNA was extracted from the hypothalamus using the RNeasy Lipid Tissue Kit (QIAGEN Sciences Inc.), and
transcribed to cDNA with random primers and oligo-dT by Superscript III reverse transcriptase (Invitrogen Corp., Carlsbad, CA). For quantitative PCR, we amplified the cDNA using Applied Biosystems Prism 7000 Sequence Detection System (Foster City, CA) with Platinum SYBER Green qPCR SuperMix-UDG with ROX solution (Invitrogen Corp.) and each primer set specific for mouse β-actin, POMC and MC₄, according to the manufacturer’s instructions (Table 1). The reactions were cycled 40 times with denaturation at 95°C for 15s, and with annealing and elongation at 60°C for 30s. The relative expression level of each mRNA was normalized using the mRNA level of β-actin.

2.6 Statistical analysis
Values are expressed as the means ± SEM. Statistical comparisons between groups were performed using one-way analysis of variance (ANOVA) followed by Bonferroni’s test. Bonferroni’s post-hoc test comparisons were carried out if significant F-value were obtained. P values <0.05 were considered significant.

3 Results
3.1 Centrally administered δ opioid agonist stimulates normal diet intake but suppresses high-fat diet intake
We investigated whether DPDPE, a δ selective agonist, stimulated normal diet intake after central administration to non-fasted male mice. ANOVA indicated that DPDPE (0.3–1.0 nmol/mouse, i.c.v.) has significant effect [F(3, 25) = 6.917, P<0.01]. The post hoc analysis using Bonferroni test indicated that DPDPE significantly
stimulates normal diet intake 60 min after administration to non-fasted male mice. This increase in food intake lasted for 240 min (Fig. 1A). In contrast, DPDPE (0.1–1 nmol/mouse, i.c.v.) suppressed high-fat diet intake in mice fed a high-fat diet for 2 weeks [F(2, 15) = 3.893, P<0.05; Fig. 1B]. Thus, we found that centrally administered DPDPE stimulates normal diet intake, but suppresses high-fat intake. Next, we investigated whether DPDPE-induced changes in food intake were mediated via the δ opioid receptor using naltrindole, a δ antagonist. Central administration of naltrindole (10 nmol/mouse) inhibited both the DPDPE (0.3 nmol/mouse)-induced increase in normal diet intake and the decrease high-fat diet intake [F(3, 20) = 12.310, P<0.001 and F(2, 14) = 6.829, P<0.01; Figs. 1C and D, respectively]. Naltrindole alone did not change normal (Fig. 1C) and high-fat diet intake (Fig. 5B). These results suggest that opposing food intake behaviors in mice fed normal and high-fat diets may be mediated through a common δ opioid receptor. We also investigated whether μ opioid agonist changes high-fat diet intake. Centrally administered μ opioid agonist, endomorphin-2, stimulates normal diet intake and high-fat diet intake [F(2,21) = 14.265, P<0.001 and F(2,12) =15.130, P<0.001; Figs. 1E and F, respectively] in non-fasted mice.

3.2 δ Agonist-induced orexigenic activity in mice fed a normal diet is mediated by the PGD²-NPY system.

We performed experiments to determine which mediators were involved in the orexigenic activity of DPDPE, downstream of the central δ opioid receptor. The orexigenic effect of DPDPE (0.3 nmol/mouse, i.c.v.) was blocked by celecoxib, a COX-2 selective inhibitor (7.9 μmol/kg, i.p.), but not by SC-560, a COX-1 selective inhibitor at a dose of 8.5 μmol/kg, i.p. [F(3, 29) = 9.191, P<0.001 and F(3, 29) = 9.344,
Among COX products, PGD$_2$, produced by L-PGDS in the CNS, exhibits orexigenic activity in mice [43]; thus we used L-PGDS KO mice to examine whether the orexigenic activity of DPDPE was mediated by L-PGDS. Centrally administered DPDPE (1.0 nmol/mouse) stimulated food intake in wild-type and hematopoietic-PGDS KO but not L-PGDS KO mice, suggesting that the orexigenic activity of DPDPE is mediated by L-PGDS [F(3, 24) = 3.662, P<0.05 and F(3, 28) = 8.369, P<0.001; Figs. 2C and D, respectively]. In addition, normal diet intake in L-PGDS or H-PGDS KO mice did not change significantly compared to wild-type mice after administration of control vehicle in this and previous study [18].

It was reported that PGD$_2$ stimulates food intake via the DP$_1$ receptor followed by the NPY-Y$_1$ receptor system [43]. The orexigenic effect of DPDPE (0.3 nmol/mouse, i.c.v.) was completely inhibited by MK0524 and BWA868C (1.6 nmol/mouse, i.c.v.), an antagonist selective for DP$_1$ receptor, or BIBO3304 (5 nmol/mouse), an antagonist for Y$_1$ receptor [F(5, 24) = 9.069, P<0.001 and F(3, 28) = 9.085, P<0.001; Figs. 2E and F, respectively]. These results suggest that central activation of δ receptor stimulates food intake via an orexigenic pathway through the L-PGDS-PGD$_2$-DP$_1$ and NPY-Y$_1$ receptor system.

3.3 δ Agonist-induced anorexigenic activity in mice fed a high-fat diet is mediated via the MC and CRF system

In mice fed a high-fat diet, central administration of DPDPE suppressed high-fat diet intake. We then investigated when DPDPE start to decrease high-fat diet intake. One day after changing from a normal to high-fat diet, DPDPE lost orexigenic activity (Fig. 3B). Seven days after the change, DPDPE significantly decreased intake.
of the high-fat diet \[F(1, 16) = 5.785, P<0.05; \text{Fig. 3F}\], suggesting that DPDPE exhibits anorexigenic activity in mice fed a high-fat diet for over 1 week. We also investigated whether high-fat diet intake affects the mRNA expression of the \(\delta\) opioid receptor, proopiomelanocortin (POMC), or MC\(_4\) receptor gene in the hypothalamus. Seven days after the change, the mRNA expression of POMC gene increased in high-fat diet-fed mice, but the mRNA expressions of the \(\delta\) opioid and MC\(_4\) receptor did not change in high-fat diet-fed mice (Table 2).

Next, we tested which mediators were involved in the suppression of high-fat diet intake by \(\delta\) agonist, downstream of the central \(\delta\) receptor. An antagonist for the MC\(_4\) receptor, HS024, was used to examine the involvement of the MC\(_4\) receptor in the \(\delta\) agonist-induced effect. The anorexigenic activity of DPDPE (0.3 nmol/mouse, i.c.v.) was inhibited by co-administration of HS024 (0.1 nmol/mouse), suggesting that DPDPE decreases high-fat intake via the MC\(_4\) receptor \[F(2, 14) = 6.850, P<0.01; \text{Fig. 4A}\]. We also investigated the involvement of CRF, which is known to be activated by \(\alpha\)-MSH, an endogenous agonist peptide for MC\(_4\) receptor, in \(\delta\) agonist-induced anorexigenic activity. The DPDPE-induced decrease in food intake (0.3 nmol/mouse) was inhibited by astressin (6 nmol/mouse, i.c.v.), a CRF receptor antagonist \[F(3, 58) = 4.295, P<0.01; \text{Fig. 4B}\]. These results suggest that central \(\delta\) receptor activation decreases high-fat diet intake in mice fed a high-fat diet via an anorexigenic pathway through the MC\(_4\) and CRF receptor system.

In addition, we investigated whether food intake suppression of \(\delta\) agonist in mice fed a high-fat diet was mediated by L-PGDS, which is coupled to orexigenic activity in mice fed a normal diet. In both L-PGDS KO and wild-type mice fed a high-fat diet, DPDPE decreased food intake \[F(3, 28) = 9.338, P<0.001; \text{Fig. 4C}\],
indicating that L-PGDS mediated orexigenic but not anorexigenic activity after central δ receptor activation. These results suggest that the opposing activities of δ receptor agonist in food intake in mice fed normal and high-fat diets are associated with different pathways in the CNS, downstream of a common δ receptor.

3.4 Orally administered rubiscolin-6, a δ opioid agonist peptide derived from food protein, suppresses high-fat diet intake

Rubiscolin-6 (Tyr-Pro-Leu-Asp-Leu-Phe) is a δ opioid peptide derived from the large subunit of D-ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), which is the key enzyme for carbon dioxide fixation and photorespiration. We found that rubiscolin-6 (0.39–3.9 μmol/kg, corresponding to 0.3–1.0 mg/kg) suppressed high-fat diet intake in mice fed a high-fat diet [F(3, 24) = 10.136, P<0.001; Fig. 5A]. The high-fat diet intake suppression of rubiscolin-6 was blocked by naltrindole [F(3, 21) = 3.351, P<0.05; Fig. 5B], suggesting that orally administrated rubiscolin-6 suppressed high-fat intake via the central δ opioid receptor. Rubiscolin-6-induced anorexigenic activity (0.39 μmol/kg, p.o.) was also inhibited by HS024 (0.1 nmol/mouse, i.c.v.), [F(3, 24) = 3.220, P<0.05; Fig. 5C], similarly to DPDPE. In both L-PGDS KO and wild-type mice fed a high-fat diet, orally administered rubiscolin-6 decreased high-fat intake [F(3, 22) = 11.247, P<0.001; Fig. 5D]. Thus, orally administered rubiscolin-6 may suppress high-fat diet intake via the central δ opioid receptor.

4 Discussion
We demonstrated that activation of the central δ opioid receptor stimulated normal diet intake, but suppressed high-fat diet intake in mice. These opposing activities, induced by an agonist of the δ receptor, were blocked by an antagonist of the δ receptor, suggesting that they are mediated via a common δ receptor. The δ opioid system is the first example of one system mediating both the stimulation of normal diet intake and the suppression of high-fat diet intake. In mice fed a normal diet, central administration of DPDPE, a selective δ agonist, stimulated food intake via δ receptor. This orexigenic activity was blocked by a COX inhibitor, knockout of the L-PGDS gene, and an antagonist of the DP₁ receptor. This was also inhibited by an antagonist of the NPY Y₁ receptor. It was reported that the central δ opioid receptor is widely expressed in the CNS, including the hypothalamus, an important site for food intake regulation, and L-PGDS and NPY-like immunoreactivity was also present in the hypothalamus [18,38]. This suggests that orexigenic activity induced by central δ activation was mediated by the PGD₂-NPY system (Fig. 6).

In mice fed a high-fat diet, DPDPE decreased high-fat diet intake after central administration. In contrast, μ receptor activation induced by central administration of DAMGO [45] and endomorphin-2 stimulated high-fat diet intake (Fig. 1F). It is noteworthy that food intake regulation elicited by activation of central δ is quite different from the μ system. Our results seemed to be consistent with previous reports that whole-body deletion of δ receptor gene increased high-fat intake [9], which was mainly explained by compensation for changes in peripheral energy expenditure. It was also reported that chronic administration of δ antagonist suppressed intake of normal
and cafeteria diet in rats with cafeteria diet-induced or genetic obesity, respectively [6,7].

The possibility that the differences in experimental conditions, including animals, their
genetical backgrounds, protocols, terms and dosages, potentially affects the results
cannot be ruled out.

The changes in the responsiveness of δ agonist occurred after short-term
feeding with high-fat diet. Indeed, one day after changing from a normal to high-fat diet,
the orexigenic activity of DPDPE disappeared, and thereafter DPDPE began to decrease
intake of the high-fat diet (Fig. 3). Seven days after the change, the mRNA expression
of the δ receptor gene [3,13,27,40] or MC₄ receptor gene in the hypothalamus, did not
change in high-fat diet-fed mice (Table 2). The relative protein expression of δ receptor
also did not change (1.00 ± 0.09% vs 1.05 ± 0.03%, normal diet vs high-fat diet fed
group, respectively) in the hypothalamus. In contrast, the hypothalamic mRNA
expression of POMC gene increased in high-fat diet-fed mice (Table 2). Therefore, the
regulation of food intake by the δ agonist-activated neural pathway might be modulated
within a short period in response to dietary fat contents.

We revealed that δ opioid-induced suppression of high-fat diet intake was
mediated by the central MC₄ receptor, which is well-known to be closely associated
with high-fat intake. For example, it was reported that activation of MC₄ receptor by
α-MSH and the synthetic analog melanotan II (MTII) potently decreased high-fat diet
intake [5,8,29], and genetic deletion of MC₄ receptor resulted in fat-induced
hyperphagia and reduced energy expenditure [2,15,42]. The knockdown of MC₄
receptor, highly expressed in the hypothalamus [2,12,22-24,42,44], increased high-fat
diet intake and caused excessive body weight gain [11]. Furthermore, it is reported that the MC$_4$ receptor is colocalized with anorexigenic CRF in the hypothalamus [25,32], and central MC$_4$ activation-induced anorexigenic activities are mediated by the CRF system [21,26] These results are consistent with our hypothesis that δ opioid is coupled to the MC-CRF system to decrease fat intake. Further investigations will elucidate the significance of these pathways controlling food intake under physiological and pathophysiological conditions.

We also found that orally administered rubiscolin-6, a δ opioid peptide derived from Rubisco, a major protein of green leaves, decreased high-fat diet intake via activation of central δ receptor. Rubiscolin-6 is the first peptide derived from food protein to suppress high-fat diet intake after oral administration. The minimum effective dose was 0.39 μmol/kg, comparable to that of conventional pharmaceuticals.

In conclusion, activation of the central δ opioid receptor stimulates normal diet intake and conversely decreases high-fat diet intake in mice. These opposing activities were mediated by a common δ receptor. Furthermore, the δ opioid receptor agonist activated independent neuronal pathways of orexigenic PGD$_2$-NPY and anorexigenic MC-CRF in mice fed a normal and high-fat diet, respectively, downstream of δ receptor. We also found that a food-derived peptide suppressed high-fat intake after oral administration.

Acknowledgement

This work was supported in part by a Grant-in-Aid for Scientific Research (B)
and a Research Fellowship for Young Scientists (DC) from the Japan Society for the Promotion of Science to KO and KK, respectively. The authors have declared no conflicts of interest.
REFERENCES

267-277.
Figure Legends

Fig. 1. Effect of δ opioid agonist on normal diet or high-fat diet intake. DPDPE was administered i.c.v. (0.1–1 nmol/mouse) and normal diet intake (A) or high-fat diet intake (B) was measured in non-fasted mice. Normal diet intake stimulation (C) or high-fat diet intake suppression (D) of DPDPE (0.3 nmol/mouse, i.c.v.) 120 min after administration was blocked by the δ opioid antagonist naltrindole (10 nmol/mouse, i.c.v.) in non-fasted mice. μ Opioid agonist endomorphin-2 was administered i.c.v. (3–30 nmol/mouse) and normal diet intake (E) or high-fat diet intake (F) was measured in non-fasted mice. Each column represents the mean ± SEM. One-way ANOVA followed by Bonferroni test were used to assess the difference among each groups. (A, n = 7–10; B, n = 6; C, n = 8–9; D, n = 6–8; E, n = 8; F, n = 5). *P <0.05, **P <0.01, ***P <0.001 compared with the control or each group. ND, normal diet. HFD, high-fat diet.

Fig. 2. Involvement of central PGD_2 and NPY system in the normal diet intake stimulation of δ opioid agonist. The orexigenic effect of DPDPE (0.3 nmol/mouse, i.c.v.) 120 min after administration was inhibited by COX-2 inhibitor celecoxib (B, 7.9 μmol/kg, i.p.), but not by COX-1 inhibitor SC-560 (A, 8.5 μmol/kg, i.p.) in non-fasted mice. DPDPE was centrally administered at a dose of 1 nmol/mouse to wild-type, L-PGDS KO (C) and H-PGDS KO (D) mice, and food intake was measured for 60 min. (E, F) The orexigenic activity of DPDPE (0.3 nmol/mouse, i.c.v.) was blocked by DP_1 receptor antagonist BWA868C and MK0524 (E, 1.6 nmol/mouse, i.c.v.) or Y_1 receptor antagonist BIBO3304 (F, 5 nmol/mouse, i.c.v.) in mice. Each column represents the mean ± SEM. One-way ANOVA followed by Bonferroni test were used to assess the difference among each groups. (A and B, n = 8–9; C, n = 6–7; D, n = 7–9; E, n = 7–10;
Fig. 3. Effect of feeding periods of high-fat diet on food intake in response to δ agonist administration. (B, D) In 1- and 3-day high-fat-diet-fed mice, DPDPE (0.3 nmol/mouse, i.c.v.) did not change intake of the high-fat diet. (F) In 7 day high-fat-diet-fed mice, DPDPE (0.3 nmol/mouse, i.c.v.) decreased intake of the high-fat diet. (A, C, E) In contrast, DPDPE (0.3 nmol/mouse, i.c.v.) always stimulated food intake in mice fed normal diet, during experimental period. Each column represents the mean ± SEM. One-way ANOVA followed by Bonferroni test were used to assess the difference among each groups. (n = 9). *P <0.05, **P <0.01 compared with each group.

Fig. 4. Involvement of central MC and CRF system in the high-fat diet intake suppression of δ opioid agonist. The anorexigenic activity of DPDPE (0.3 nmol/mouse, i.c.v.) was blocked by MC₄ receptor antagonist HS024 (A, 0.1 nmol/mouse, i.c.v.) or CRF receptor antagonist astressin (B, 6 nmol/mouse, i.c.v.) in mice. (C) Centrally administered DPDPE (1 nmol/mouse) decrease high-fat diet intake in wild-type and L-PGDS KO mice. Each column represents the mean ± SEM. One-way ANOVA followed by Bonferroni test were used to assess the difference among each groups. (A, n = 6–8; B, n = 8–18; C, n = 7). *P <0.05, **P <0.01, ***P <0.001 compared with each group.

Fig. 5. Effect of rubiscolin-6 oral administration on high-fat diet intake in mice. (A) Rubiscolin-6 was orally administered at a dose of 0.39–3.9 μmol/kg and food intake
was measured in non-fasted mice. The high-fat diet intake suppression of rubiscolin-6 (0.39 μmol/kg, p.o.) 60 min after administration was blocked by naltrindole (B, 10 nmol/mouse, i.c.v.) or HS024 (C, 0.1 nmol/mouse, i.c.v.) in non-fasted mice. (D) Orally administered rubiscolin-6 (1.3 μmol/kg) decreased high-fat diet intake in wild-type and L-PGDS KO mice. Each column represents the mean ± SEM. One-way ANOVA followed by Bonferroni test were used to assess the difference among each groups. (n = 6–8).*P <0.05, **P <0.01, ***P <0.001 compared with each group.

Fig. 6. Model of δ opioid agonist-induced opposing effects on food intake in mice fed normal and high-fat diets.
Fig. 1

A. δ opioid agonist (ND)
B. δ opioid agonist (HFD)
C. δ opioid antagonist (ND)
D. δ opioid antagonist (HFD)
E. μ opioid agonist (ND)
F. μ opioid agonist (HFD)
Fig. 2 A. COX-1 inhibitor

B. COX-2 inhibitor

C. L-PGDS KO mice

D. H-PGDS KO mice

E. DP₁ antagonist

F. Y₁ antagonist
Fig. 3
a. day 1
A. Normal diet fed mice
B. High-fat diet fed mice

c. day 7
E. Normal diet fed mice
F. High-fat diet fed mice
Fig. 4

A. MC₄ receptor antagonist

![Graph showing high-fat diet intake with DPDPE and HS024 treatments.]

B. CRF receptor antagonist

![Graph showing high-fat diet intake with DPDPE and astressin treatments.]

C. L-PGDS KO mice

![Graph showing high-fat diet intake with DPDPE treatments for wild-type and L-PGDS KO mice.]

DPDPE: + + +

HS024: -- +

astressin: -- + +

wild-type: +

L-PGDS KO: +
Fig. 5

A. rubiscolin-6 (p.o.)

B. δ opioid antagonist

C. MC₄ antagonist

D. L-PGDS KO mice
Fig. 6

\[\delta \text{opioid agonist} \rightarrow \delta \text{opioid receptor} \]

- **naltrindole**

- **COX-2**
 - **indomethacin**
 - **celecoxib**
 - **L-PGDS KO mice**

- **L-PGDS**
 - **BWA868C**
 - **MK0524**

- **PGD}_2}_2\]

- **DP\textsubscript{1} receptor**
 - **BIBO3304**
 - **Y\textsubscript{1} receptor**

- **NPY**

- **CRF**
 - **astressin**

- **MC\textsubscript{4} receptor**

- **CRF receptor**

Normal diet intake

High-fat diet intake
Table 1. Oligonucleotide sequence of PCR primers specific for δ-opioid receptor, POMC, MC4 receptor and β-actin.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ receptor</td>
<td>GCTCGTCATGTTTGGCATC</td>
<td>AAGTACTTTGGCGCTCTGGAA</td>
</tr>
<tr>
<td>POMC</td>
<td>GGCTTGCAAAACTCGACCTCT</td>
<td>TGACCACATGACGTACTTCCG</td>
</tr>
<tr>
<td>MC4</td>
<td>TCTCTATGTCCACATGTTCTTG</td>
<td>GGGGCCAGCAGACAAACAAAG</td>
</tr>
<tr>
<td>β-actin</td>
<td>CTGCACAAGTTAGGGTTTTGTCA</td>
<td>TGCTTCTAGGCGGACTGTTACTG</td>
</tr>
</tbody>
</table>
Table 2. Effect of seven days high-fat diet feeding on hypothalamic mRNA levels of δ-opioid receptor, POMC and MC₄ receptor.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Normal diet</th>
<th>High-fat diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ receptor</td>
<td>1.0 ± 0.13</td>
<td>0.73 ± 0.11</td>
</tr>
<tr>
<td>POMC</td>
<td>1.0 ± 0.20</td>
<td>1.70 ± 0.19*</td>
</tr>
<tr>
<td>MC₄</td>
<td>1.0 ± 0.13</td>
<td>1.39 ± 0.30</td>
</tr>
</tbody>
</table>

Values are indicated as the mean ± SEM (n=5–6). Student t-test was used for comparison of two groups. *P<0.05 as compared to normal diet fed group.